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Abstract—Propelled by recent advances in Mobile Edge Computing (MEC) and the Internet of Things (IoT), the digital twin technique
has been envisioned as a de-facto driving force to bridge the virtual and physical worlds through creating digital portrayals of physical
objects. In virtue of the flourishing of edge intelligence and abundant IoT data, data-driven modelling facilitates the implementation and
maintenance of digital twins, where simulations of physical objects are usually performed based on Deep Neural Networks (DNNs). A
significant advantage of adopting digital twins is to enable decisive prediction on the behaviours of objects in near future without waiting
for that really happen. To provide accurate predictions, it is vital to keep each digital twin synchronized with its physical object in
real-time. However, it is challenging to maintain the real-time synchronization between a digital twin and its physical object due to the
dynamics of physical objects and sensing data drift over time, i.e., the live data from a physical object diverge from the model training
data of its digital twin. To address this critical issue, continual learning is a promising solution to retrain models of digital twins
incrementally. In this paper, we investigate digital twin synchronization issues via continual learning in an MEC environment, with the
aim to maximize the total utility gain, i.e., the enhanced model accuracy. We study two novel optimization problems: the static digital
twin synchronization problem per time slot and the dynamic digital twin synchronization problem for a finite time horizon. We first
formulate an Integer Linear Program (ILP) solution for the static digital twin synchronization problem when the problem size is small;
otherwise, we develop a randomized approximation algorithm at the expense of bounded resource violations for it. We also devise a
deterministic approximation algorithm with guaranteed performance for a special case of the static digital twin synchronization problem.
We thirdly consider the dynamic digital twin synchronization problem by proposing an efficient online algorithm for it. Finally, we
evaluate the performance of the proposed algorithms for continuous digital twin synchronization through simulations. Simulation results
show that the proposed algorithms are promising, outperforming counterpart benchmarks by no less than 13.2%, in terms of the total
utility gain.

Index Terms—Digital twin, continual learning, mobile edge computing, resource allocation, inference model accuracy, model
retraining, approximation algorithm, and online algorithm.

✦

1 INTRODUCTION

With the far-reaching information technologies in full
swing, digital twins have been conceived to catalyze the
immersing digitization and intelligent upgrade, catering to
the escalating momentum for the interaction and integration
of digital and physical worlds [31]. Driven by the compre-
hensive interpretation of data and models, a digital twin
is created as an accurate portrayal of a physical object in
cyberspace [40]. The pairing of each digital twin with its
physical object allows insightful data analysis or computer
simulations to help decision-making or head off potential
serious problems prior to their arising [42]. The digital twin
technique has been widely applied for manufacturing [12],
healthcare [8], aeronautics, astronautics [42], etc., and it is
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envisioned that the global market for digital twins will reach
USD 73.5 billion by 2027 [33].

Linked with the proliferation of Internet of Things
(IoT) devices and the continuous generation of abundant
IoT data [22], data-driven modelling for the implementa-
tion and maintenance of digital twins has become popular,
where their data-driven models are trained by Artificial
Intelligence (AI) and Machine Learning (ML) methods [29],
[38]. It is pivotal for digital twins to guarantee the high-
fidelity reflection of physical objects during the operation
process through real-time monitoring, in terms of dynamics,
intricacy, and coupling effects in the real world [12], [44].
However, such requirements for digital twins cannot be
met via the centralized cloud computing which causes long
communication delays, and the raw data is usually private,
which is sensitive to be sent to the centralized cloud [1].

Mobile Edge Computing (MEC) has been anticipated as
a promising paradigm to distribute computing and storage
resources at network edge to reduce the network service
latency of users significantly, while preserving user pri-
vacy [4], [10], [20], [21], [32]. In the sequel, edge intelligence
has gained mounting traction in boosting the performance
of digital twins and endowing high consistency between
digital twins and their physical objects via edge devices [9].
For example, empowered by edge intelligence, digital twins
of vehicles can provide real-time services to users, such as
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collision prevention in autonomous driving.
In this paper, we focus on the state updating and

maintenance of digital twins through data-driven modelling
in an MEC environment, where the data-driven modelling
on digital twins is usually performed by Deep Neural
Networks (DNNs) for simulations of physical objects [7].
Preserving historical knowledge while learning live knowl-
edge is important in realizing real-time digital twin syn-
chronization to support digital twin-enabled services, such
as in-depth data analysis, predicting the future states of
physical objects and simulating the lifecycles of physical
objects [6]. Considering the dynamics of physical objects
in an MEC network, the quality of digital twin services
gradually deteriorates due to data drift [1], i.e., the live
streaming data uploaded by a physical object diverge from
the model training data of its digital twin. To mitigate the
impact of data drift, the continual learning technology has
been envisaged as a promising solution to combat such data
draft in the data-driven modelling of digital twins, through
retraining the DNN models periodically to learn from live
data without catastrophic forgetting [15]. Recognizing the
advantages of cloudlets (edge servers), continual learning
has been adopted in platforms in edge environments, e.g.,
AWS IoT Greengrass and Google Cloud IoT Edge [11].

Given a finite time horizon composed of equal time
slots, each time slot is treated as a retraining window in
continual learning [1], i.e., the DNN model of a digital twin
is retrained at each time slot. With a set of requests for
digital twin synchronization in the beginning of a time slot,
each synchronization request is associated with new data
samples uploaded for the model retraining of a digital twin.
To enable efficient digital twin synchronization with their
objects via continual learning in an MEC environment, it
poses the following questions.

The first one is how to determine the amount of retrain-
ing data for each digital twin at each time slot to maximize
the overall model performance of digital twins? With a
large volume of IoT data of physical objects collected pe-
riodically for digital twin synchronization, model retraining
for data-driven modelling of digital twins is considered to
be compute-intensive and data-intensive [11]. Namely, the
model performance depends on the amount of input data
for model training, while a larger amount of training data
leads to consuming more computing resource [10], [43]. As
the data of objects are used for various DNN models of
digital twins, to maintain the accuracy of the DNN models,
they need to be trained by the updated data from objects.
It thus is critical to perform synchronizations between the
digital twins and their objects through efficient resource
allocations.

The second one is how to determine the cloudlet of each
request for model retraining, subject to computing capacities
of cloudlets? Because a cloudlet may not have sufficient
computing resource for model retraining of all digital twins
stored in the cloudlet, a synchronization request can be
offloaded to another cloudlet from the cloudlet holding
the digital twin within its maximum transmission distance,
through transmitting current model parameters and the
determined amount of retraining data. The parameters of
the retrained model are then sent back to the cloudlet hold-
ing the digital twin for aggregating with historical model

parameters, e.g., adopt temporal model-averaging to update
model parameters, incorporating the knowledge from both
live and historical data [11].

Without the future knowledge of arrivals of synchro-
nization requests, the final question is how to maximize
the overall model performance of digital twins for each
model retraining during a finite time horizon? DNN models
of digital twins are retrained in an incremental manner
by continual learning, i.e., the performance of a retrained
model depends on how the model was retrained previously.

The novelties of this work lie in dealing with continu-
ous digital twin synchronization in MEC networks through
exploring system dynamics, with the aim to maximize the
total utility gain, i.e., the enhanced model accuracy via
continual learning. Two novel problems of digital twin
synchronization are formulated. Approximation and online
algorithms for the two problems are developed and ana-
lyzed.

The main contributions of this paper are given as fol-
lows.

• We formulate two novel problems of continuous dig-
ital twin synchronization: the static digital twin syn-
chronization problem per time slot and the dynamic
digital twin synchronization problem for a finite time
horizon, and demonstrate their NP-hardness.

• We provide an Integer Linear Program (ILP) solution
for the static digital twin synchronization problem
when the problem size is small. Otherwise, we pro-
pose a randomized algorithm with a provable ap-
proximation ratio for the problem, at the expense
of bounded resource violations. Also, we consider
a special case of the problem where each digital
twin synchronization request can be offloaded to
any cloudlet with sufficient computing resource, for
which we devise a determined approximation algo-
rithm with guaranteed performance.

• We develop an efficient online algorithm for the
dynamic digital twin synchronization problem.

• We evaluate the performance of the proposed algo-
rithms for continuous digital twin synchronization
in MEC through simulations. The results demon-
strate the proposed algorithms are promising, out-
performing their corresponding benchmarks by at
least 13.2%, in terms of the total utility gain.

The rest of this article is arranged as follows. Sec-
tion 2 surveyed the related work on continuous digital
twin synchronization in MEC environments via continual
learning. Section 3 offers problem definitions and the NP-
hardness proofs of the defined problems. Section 4 devises
a randomized algorithm for the static digital twin synchro-
nization problem, and Section 5 develops an approximation
algorithm for a special static digital twin synchronization
problem. Section 6 designs an online algorithm for the dy-
namic digital twin synchronization problem. The algorithm
performance is evaluated in Section 7, and the paper is
concluded in Section 8.

2 RELATED WORK

The MEC paradigm offers a variety of mobile applica-
tions at network edge close to users and physical objects
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(i.e., data sources), meeting the demands of digital twins
for real-time processing and modelling. Existing work in
the literature has explored the dynamic characteristics in
MEC networks to enable efficient long-term digital twin
services [8], [17], [18], [23], [27], [31], [40]. For example, con-
sidering the dynamic states of the MEC network, He et al. [8]
utilized digital twins to estimate the collected data sizes of
user devices and assist local computation of edge servers in
each iteration of federated learning, mitigating the energy
consumption and transmission delay. Li et al. [17], [18] ex-
plored the dynamic reliability prediction of Virtual Network
Function (VNF) instances via digital twins, and proposed
performance-guaranteed algorithms to mitigate the service
cost and maximize request admissions with reliability re-
quirements for service function chains. Li et al. [23] also
incorporated the mobility of objects in edge-cloud environ-
ments to deploy digital twins in edge servers dynamically,
and proposed approximate and online solutions to provide
fresh digital twin data to users. Lin et al. [27] studied the
stochastic service demands and mobility of users in a digital
twin edge network, and developed a long-term congestion
control scheme to enhance the accumulated profit of the
digital twin service provider, by the Lyapunov optimization
technology. Lu et al. [31] investigated the deployment and
migration issue of digital twins to minimize service delay
and energy cost in MEC environments, based on Deep
Reinforcement Learning (DRL). Sun et al. [40] leveraged the
digital twins for edge servers to anticipate their states under
erratic user mobility, and adopted a DRL-based framework
to devise an efficient mobile offloading scheme, with the
aim to mitigate the average offloading latency among users.
However, the aforementioned studies did not consider both
the continuous evolution of digital twins and the dynamic
retraining of their DNN models, through incorporating live
data streaming from their physical objects.

Efficient synchronization between digital twins and
their physical objects in a dynamic environment has at-
tracted lots of attentions recently [5], [6], [8], [9], [31], [46].
For example, Gehrmann et al. [5] designed a security archi-
tecture for a digital twin-assisted automation and control
scheme with synchronization demands. Han et al. [6] ad-
dressed the digital twin synchronization problem to max-
imize the payoff of virtual service providers, through em-
ploying Unmanned Aerial Vehicles (UAVs) to collect up-to-
date sensory data from objects. They formulated the prob-
lem as an evolutionary game and delivered open-loop Nash
solutions. Zheng et al. [46] studied the dynamic data syn-
chronization between a vehicle and its digital twin, adopting
a transfer learning technique. They developed an actor-critic
learning approach to reduce the long-term cost in a dynamic
vehicular network. However, the above-mentioned studies
did not incorporate the continual learning technique for
the dynamic and continuous evolution of digital twins for
synchronization in MEC.

Enabled by edge intelligence, data-driven modelling
has become a popular approach for building digital twins,
where Deep Neural Networks (DNNs) are usually lever-
aged for the simulations of digital twins [29], [38]. Thanks
to the continual learning technique, a DNN model can be
retrained incrementally while preserving its earlier knowl-
edge [15], [36], facilitating the efficient digital twin service

provisioning based on DNNs. For example, Hashash et
al. [7] concentrated on DNN-based digital twins and devel-
oped an edge continual learning framework to keep a digital
twin synchronized with its physical object, improving the
accuracy of the retrained DNN model of the digital twin
while minimizing the desynchronization time. However,
they considered only a single digital twin with a single
edge server, and they did not pay attention to the efficient
resource allocation on dynamic synchronizations for a set of
digital twins in MEC. Moreover, the continual learning tech-
nique has been adopted for dynamic DNN model retraining
in MEC networks [1], [3], [11], [13]. For example, Bhardwaj et
al. [1] designed a solution, Ekya, to schedule resources to
enable retraining and inference jobs simultaneously for con-
tinuous learning in MEC networks. Demosthenous et al. [3]
leveraged the TensorFlow Lite library to build a continual
learning model on edge devices, via adding a replay buffer
to a transfer learning model. Jia et al. [11] explored how
to combine edge and cloud resources to carry out continual
learning on DNN models. Based on Lyapunov optimization,
they proposed an online optimization framework for model
retraining with dynamic arrivals of new data samples at a
low cost while augmenting model performance. Khani et
al. [13] developed a video-analytics mechanism based on
a single server machine, combining model reusing and
continuous retraining. However, the mentioned studies did
not consider adopting continual learning to preserve the
synchronization between digital twins and their physical
objects in MEC environments with dynamics.

In contrast to the aforementioned works, in this paper
we study the dynamic synchronization of digital twins with
their physical objects in an MEC network via continual
learning. We develop efficient approximation and online
algorithms for the problems.

3 PRELIMINARIES

In this section, we introduce the system model, notions,
notations, and problem definitions.

3.1 System model

Considering an MEC network G = (V,E), there is a
set V of cloudlets scattered in a geographical area. Each
cloudlet is co-located with an Access Point (AP), while
a cloudlet and its co-located AP are connected through
an optical cable [21]. Denote by v a cloudlet or its co-
located AP with v ∈ V for simplicity, and let capv be
the computing capacity of cloudlet v ∈ V . For each AP
v ∈ V , there is a neighbour set Neighbour(v) (⊆ V ), where
Neighbour(v) = {u | u ∈ V & dist(v, u) ≤ dmax(v)},
dist(v, u) is the Euclidean distance from node v to node u,
and dmax(v) is the maximum transmission distance of AP
v [41]. A set E of links between APs with E = {(v, u) | AP
u is within the maximum transmission distance of AP v}.
The model retraining for digital twin synchronization can
be offloaded from a cloudlet v holding the digital twin to
another cloudlet in Neighbour(v), which will be detailed
later.

Existing studies have been devoted to investigating
placing digital twins in edge networks, considering the
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Fig. 1. An illustrative example of an MEC network with 7 APs, where
each AP is co-located with a cloudlet. There are two physical objects
with their digital twins stored in a cloudlet v1 within the maximum
transmission distance of its co-located AP. The model retraining of the
two digital twins could be offloaded from cloudlet v1 to another cloudlet
v2 within the maximum transmission distance of the co-located AP of
cloudlet v1.

dynamic movements of physical objects [23], [31], [40]. In
this paper, we assume that digital twins of physical objects
have been deployed in cloudlets. In other words, given a
set N of physical objects in the MEC network, we assume
that a digital twin DT (n) for each object n ∈ N has been
deployed in a cloudlet vn ∈ V to offer services to users, with
object n under the coverage of AP vn, while the digital twins
are based on data-driven modelling and managed by deep
learning frameworks, i.e., each digital twin is simulated by a
Deep Neural Network (DNN) model [7]. Figure 1 illustrates
an MEC network with digital twins stored in its cloudlets.

Given a finite time horizon T = {1, 2, . . . , |T |}, the
MEC network is considered to run in a discrete-time man-
ner. Due to the system dynamics of the MEC network, the
live incoming data for digital twins may be distinguished
from the training data of their DNN models. It is necessary
to collect up-to-date data from objects periodically, and to
use the data to retrain the DNN models of their digital twins
at each time slot via continual learning.

3.2 Synchronization requests, submodular functions
and the utility gain

Each object n ∈ N may issue a synchronization request
rn,t through uploading an,t units of collected data samples
for synchronization with its digital twin DT (n) in the be-
ginning of time slot t, where an,t is a positive integer with
an,t ≥ 1, e.g., a unit data can be 1MB. Denote by Rt the set
of synchronization requests issued at time slot t ∈ T . Ideally,
incorporating all incoming data for model retraining of each
request in Rt for synchronization will endow the inference
results with more accuracy and robustness [11], providing
digital twin services with better performances.

Retraining DNN models with a large amount of data
however consumes much computing resource, while the
computing resource in cloudlets is limited. Suppose that
the computing resource consumption for model retraining
is proportional to the size of input data samples. Let δn,t be
a constant as the amount of computing resource consumed
for model retraining on one unit of data samples for digital
twin DT (n) at time slot t. To handle resource competitions

among digital twins, we need to determine the number
bn,t of units of retraining data samples of each request
rn,t ∈ Rt at each time slot t, and bn,t is an integer with
0 ≤ bn,t ≤ an,t. Then, it consumes the amount bn,t · δn,t
of computing resource for each request rn,t. Notice that if
bn,t = 0, request rn,t is rejected.

In the following, we define the utility gain hn,t(bn,t)
of request rn,t, through retraining the model of digital twin
DT (n) at time slot t with bn,t units of data samples.

hn,t(bn,t) = Accuracy(n, t, bn,t)−Accuracy(n, t, 0), (1)

where Accuracy(n, t, bn,t) is the model accuracy of DT (n)
after its retraining with bn,t units of data samples at time slot
t. Accuracy(n, t, 0) is the model accuracy of DT (n) without
any retraining at time slot t. We observe hn,t(0) = 0, i.e.,
request rn,t is rejected, and no utility gain is obtained.

There are several works to estimate the accuracy of a
retrained model [1], [13]. For example, the authors in [1]
proposed a micro-profiler, which can be used to estimate the
accuracy of the retrained model with different retraining
data sizes, by retraining the model with a small subset
of training data and several epochs. Through conducting
experiments on various well-known DNNs, they claimed
the proposed micro-profiler is 100× more efficient than
exhaustive profiling, and the error of accuracy estimation is
around 5.8%, which is low enough in practice [1]. Moreover,
the authors in [13] developed a profiler to estimate the
retraining speed of each model, by measuring the actual
accuracy improvement of each model within its learning
progress.

Through adopting existing techniques, e.g., micro-
profiler [1], we can estimate the utility gain hn,t(·) in a
short time. However, it is difficult to estimate hn,t(·) before
time slot t. This is because the DNN models of digital
twins are retrained in an incremental manner via continual
learning, i.e., the model quality of DT (n) at time slot (t−1)
impacts its digital twin service performance at time slot t.
This means that for a given digital twin DT (n), the utility
gain function hn,t(·) at time slot t depends on not only the
new data samples, but also the quality of its DNN model
retrained at all previous time slots. Therefore, the utility gain
function hn,t(·) is unknown until time slot t.
Definition 1. Given a finite set Ω and a set R≥0 of non-

negative real numbers, a submodular function on Ω is
a set function g : 2Ω 7−→ R≥0. Function g(·) is a
submodular function if (i) g(∅) = 0, and (ii) for every
two sets S1, S2 ⊆ Ω with S1 ⊆ S2 and every element
s ∈ Ω \ S2, g(S1 ∪ {s})− g(S1) ≥ g(S2 ∪ {s})− g(S2).

It is worth mentioning that with the increase on the re-
training data for digital twin DT (n), its model performance
increases, while the growth rate of its model performance
becomes slower by theoretical and empirical practices [10],
[43]. Hence, we assume that the utility gain function hn,t(·)
is a submodular function.

Recall that digital twin DT (n) of object n ∈ N is
established in cloudlet vn. Because the computing resource
possessed by cloudlet vn may be insufficient for the syn-
chronization of all digital twins in cloudlet vn, we can
offload the synchronization request of object n to another
cloudlet within the maximum transmission distance of the
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AP co-located with cloudlet vn, through transmitting cur-
rent model parameters and the determined amount of re-
training data. The parameters of the retrained DNN model
are then sent back to cloudlet vn for aggregating with the
historical model parameters of the digital twin, e.g., adopt
temporal model-averaging to update the model parameters,
incorporating the knowledge from both the live and histor-
ical data of the physical object [11]. Let V(n) be a set of
cloudlets, consisting of cloudlet vn and all cloudlets within
the maximum transmission distance of the AP co-located
with the cloudlet vn, i.e., V(n) = {vn} ∪Neighbour(vn). It
can be seen that the synchronization request of object n for
its digital twin can be processed in any cloudlet v′ ∈ V(n).

3.3 Problem definitions
We first consider the static digital twin synchroniza-

tion problem for a single time slot in the defined MEC
network as follows. In the beginning of time slot t, for
each synchronization request rn,t ∈ Rt, given the utility
gain function hn,t(·) of each digital twin DT (n), we deter-
mine the number bn,t of units of retraining data samples
for each request, which consumes the amount bn,t · δn,t
of computing resource. Because the request of DT (n) in
cloudlet vn can be processed in any cloudlet v′ ∈ V(n)
with V(n) = {vn} ∪Neighbour(vn), we also determine the
cloudlet for each request in which it is processed, consider-
ing computing capacities on cloudlets.
Definition 2. Given an MEC network G = (V,E), a single

time slot t, a set N of physical objects, and a set Rt
of synchronization requests, each request rn,t ∈ Rt
of object n has an,t units of data samples uploaded
for synchronization with its digital twin DT (n) in the
beginning of time slot t, and the utility gain function
hn,t(·). The static digital twin synchronization problem
in G is to maximize the total utility gain of synchro-
nization requests in Rt at time slot t, i.e., maximize∑
rn,t∈Rt

hn,t(bn,t), through determining the number
bn,t of units of retraining data samples of each request
rn,t, subject to computing capacities on cloudlets.

Let N (Rt) be the set of objects with each issuing a
synchronization request inRt in the beginning of time slot t.
Let xn,v,k(t) be a binary decision variable, and xn,v,k(t) = 1
means the synchronization request rn,t of object n ∈ N (Rt)
is processed in cloudlet v ∈ V with k units of retraining data
samples, where k is a positive integer with 1 ≤ k ≤ an,t,
and an,t is the number of units of data samples uploaded of
request rn,t; otherwise xn,v,k(t) = 0.

The Integer Linear Program (ILP) solution to the static
digital twin synchronization problem at time slot t is formu-
lated as follows.

Maximize
∑

n∈N (Rt)

∑
v∈V

an,t∑
k=1

hn,t(k) · x1n, v, k(t), (2)

subject to:∑
n∈N (Rt)

an,t∑
k=1

k · δn,t · xn,v,k(t) ≤ capv, ∀v ∈ V (3)

∑
v∈V(n)

an,t∑
k=1

xn,v,k(t) ≤ 1, ∀n ∈ N (Rt) (4)

xn,v,k(t)=0, ∀n∈N (Rt), ∀v∈V \V(n), ∀k∈ [1, an,t] (5)
xn,v,k(t)∈{0, 1}, ∀n∈N (Rt), ∀v∈V, ∀k∈ [1, an,t], (6)

where objective (2) indicates the total utility gain of syn-
chronization requests in Rt at time slot t. Constraint (3)
means no computing resource capacity of cloudlet is vi-
olated. Constraint (4) means the request of each object
n ∈ N is processed on at most one cloudlet in V(n) =
{vn} ∪ Neighbour(vn), with the determined amount of
retraining data. Constraint (5) shows each synchronization
request cannot be processed on any cloudlet out of the
maximum transmission distance of the AP co-located with
the cloudlet holding the digital twin, i.e., each request of
object n ∈ N (Rt) cannot be processed in any cloudlet
v ∈ V \ V(n). Constraint (6) shows xn,v,k(t) is a binary
decision variable showing whether the synchronization re-
quest of object n ∈ N (Rt) is processed in cloudlet v ∈ V ,
and k units of data samples are utilized for model retraining
of digital twin DT (n), with k ∈ [1, an,t].

We then consider the dynamic digital twin synchroniza-
tion problem as follows. Given a finite time horizon T con-
sisting of sequential time slots, a set Rt of synchronization
requests are issued in the beginning of each time slot t ∈ T ,
without any knowledge of future requests. Note that the
utility gain function hn,t(·) of digital twin DT (n) at time
slot t depends on its model retrained at previous time slots,
because the models are retrained in an incremental manner
by continual learning. The dynamic digital twin synchro-
nization problem is to dynamically determine the amount
of retraining data for each digital twin synchronization and
at which cloudlet for its implementation at that time slot,
without any future knowledge.
Definition 3. Given an MEC network G = (V,E), a finite

time horizon T , a set N of physical objects, and a set
Rt of synchronization requests at each time slot t ∈ T
without the knowledge of future request arrivals, each
request rn,t ∈ Rt of object n at time slot t has an,t units
of data samples uploaded for synchronization with its
DT (n) and a utility gain function hn,t(·). The dynamic
digital twin synchronization problem in G is to maximize
the accumulated utility gain of all admitted synchro-
nization requests over time horizon T , i.e., maximize∑
t∈T

∑
rn,t∈Rt

hn,t(bn,t), through dynamically deter-
mining the number bn,t of units of data samples for the
model retraining of each synchronization request rn,t in
the beginning of time slot t ∈ T , subject to computing
capacities on cloudlets.

All symbols adopted are listed in Table 1.

3.4 NP-hardness of the defined problems
Theorem 1. the static digital twin synchronization problem

in an MEC network G = (V,E) is NP-hard.

Proof We show the NP-hardness of the static digital twin
synchronization problem via a polynomial reduction from
the Generalized Assignment Problem (GAP) [35], which is
NP-hard.

Given a set B of bins with each bin b ∈ B possessing
the capacity C(b), there are a set I of items, and a profit
profit(i, b) is collected by packing item item(i) ∈ I into
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TABLE 1
Table of Symbols

Notations Descriptions
G = (V,E) In an MEC network G, V is the set of APs (cloudlets) and E is the set of links between APs.

capv The computing capacity of cloudlet v.
Neighbour(v) The neighbour node set of AP v, with Neighbour(v) = {u | u ∈ V & dist(v, u) ≤ dmax(v)}, dist(v, u) is the Euclidean

distance from node v to node u, and dmax(v) is the maximum transmission distance of AP v.
T = {1, 2, . . . , |T |} The monitoring time horizon.

N The set of physical objects.
DT (n) and vn The digital twin of object n, and the cloudlet holding digital twin DT (n).

rn,t The synchronization request issued by object n at time slot t.
Rt The set of synchronization requests issued at time slot t.
an,t The number of units of collected data samples for synchronization with digital twin DT (n) at time slot t.
bn,t The determined number bn,t of units of retraining data samples of request rn,t ∈ Rt at time slot t.
δn,t The amount of computing resource consumed for model retraining on one unit of data samples for digital twin DT (n)

at time slot t.
Accuracy(n, t, bn,t) The model accuracy of DT (n) after its retraining with bn,t units of data samples at time slot t.

hn,t(bn,t) The utility gain of request rn,t, through retraining the model of digital twin DT (n) at time slot t with bn,t units of
data samples, defined by Eq. (1).

V(n) The set of cloudlets, consisting of cloudlet vn and all cloudlets within the maximum transmission distance of the AP
co-located with the cloudlet vn, i.e., V(n) = {vn} ∪Neighbour(vn).

N (Rt) The set of objects with each issuing a synchronization request in Rt at time slot t.
xn,v,k(t) The binary decision variable showing whether the synchronization request rn,t of object n is processed in cloudlet

v ∈ V with k units of retraining data samples.
pn,k,t The utility gain margin for model training of DT (n) by utilizing k units of data samples, compared with that utilizing

the (k − 1) units of data samples at time slot t.
yn,k(t) Then binary variable showing whether the model training of DT (n) utilizes the kth unit of data samples with 1 ≤ k ≤

an,t at time slot t.
Rinital

v,t The set of synchronization requests assigned to cloudlet v at time slot t by the initial solution by invoking Algorithm 1.

∆ψn,t(bn,t) The marginal utility loss of reducing one unit of retraining data samples for request rn,t with bn,t ≥ 1.

bin b, where each item item(i) has a size size(i). The GAP
is to maximize the total collected profit.

In the following, we consider a special case of the static
digital twin synchronization problem, where each request
rn,t ∈ Rt is associated with one unit of data samples
uploaded at time slot t, i.e., an,t = 1. We treat each cloudlet
v ∈ V as a bin with capacity capv , while we treat each
request as an item with size of δn,t, i.e., the computing
resource demand of model retraining for digital twinDT (n)
with one unit of data samples at time slot t. If synchroniza-
tion request rn,t is processed in cloudlet v′ ∈ V(n), a profit
hn,t(1) is collected. Otherwise (request rn,t is rejected or
processed in a cloudlet v′ ∈ V \ V(n)), the collected profit
is 0. We can observe this special problem is to maximize the
total collected profit by allocating requests Rt to cloudlets V
for digital twin synchronization at time slot t. Such a special
case of the static digital twin synchronization problem is
equivalent to the NP-hard GAP [35]. Thus, the static digital
twin synchronization problem is NP-hard. ■

Corollary 1. The dynamic digital twin synchronization
problem in an MEC network G = (V,E) is NP-hard.

Proof We can observe that the static digital twin synchro-
nization problem is a special case of the dynamic digital
twin synchronization problem when the monitoring period
consists of a single time slot only. Therefore, the dynamic
digital twin synchronization problem is NP-hard, because
of the NP-hardness of the static digital twin synchronization

problem by Theorem 1. Hence, the corollary follows. ■

4 RANDOMIZED ALGORITHM FOR THE STATIC DIG-
ITAL TWIN SYNCHRONIZATION PROBLEM

In this section, we devise a randomized algorithm for
the static digital twin synchronization problem, built upon
the Integer Linear Program (ILP) solution (2).

4.1 Randomized algorithm

Although the ILP formulation (2) can find an exact so-
lution for the static digital twin synchronization problem, its
running time is excessively large when the problem is large.
To provide a feasible solution in a reasonable amount of time
when the problem size is large, the randomized technique is
a powerful tool [37], which has been used for reliable service
function chain services in MEC [22], [25], [26]. Following
the same spirit, we develop a randomized algorithm for the
static digital twin synchronization problem as follows.

We first relax the values of binary variables xn,v,k(t)
into real numbers between 0 and 1, i.e., we have

x̃n,v,k(t) ∈ [0, 1], ∀n ∈ N (Rt), ∀v ∈ V, ∀k ∈ [1, an,t]. (7)

We then obtain an optimal fractional solution to the
static digital twin synchronization problem based on its
relaxed Linear Program (LP) solution by (2). We finally
obtain an integral solution, through performing randomized
rounding [37] on the optimal fractional solution. That is,
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Algorithm 1 A randomized algorithm for the static digital
twin synchronization problem
Input: Given an MEC network G = (V,E), a single time

slot t, a set N of physical objects, a set Rt of synchro-
nization requests, and the utility gain function hn,t(·),
each request rn,t ∈ Rt of object n has an,t units of data
samples uploaded in the beginning of time slot t.

Output: A solution to maximize the total utility gain of
synchronization requests at time slot t.

1: Solve the relaxed LP formulation (2);
2: Obtain the optimal fractional solution to the LP formu-

lation, with x̃n,v,k(t) ∈ [0, 1] the fractional value of each
xn,v,k(t);

3: Due to the randomized rounding by [37], we set the inte-
gral value x̂n,v,k(t) of xn,v,k(t) as 1 with the probability
of x̃n,v,k(t); we set x̂n,v,k(t) as 0 otherwise. We perform
such randomized rounding in an exclusive manner by
Constraint (4), and the randomized rounding is also
performed independently for each object n∈N (Rt);

4: Return An integral solution, i.e., {x̂n,v,k(t) | ∀n ∈
N (Rt),∀v ∈ V,∀k ∈ [1, an,t]}.

each binary decision variable xn,v,k(t) is set as 1 with the
probability x̃n,v,k(t). Note that we perform the randomized
rounding exclusively based on Constraint (4), i.e. at most
one xn,v,k(t), ∀n ∈ N (Rt) can be set as 1, while the rest is
set as 0. Such randomized rounding is performed for each
object n ∈ N (Rt) independently.

The proposed randomized algorithm is detailed in
Algorithm 1.

4.2 Algorithm analysis
The rest is to prove the approximation ratio of

Algorithm 1 and bound its capacity violation on any
cloudlet. Let γ be defined as follows.

γ = max{hn,t(an,t), an,t · δn,t | ∀n ∈ N (Rt)}, (8)

where max{hn,t(an,t) | ∀n ∈ N (Rt)} is the maximum util-
ity gain by a synchronization request at time slot t with an,t
units of retraining data samples, and max{an,t · δn,t | ∀n ∈
N (Rt)} is the maximum demand of computing resource
for a synchronization request with its all retraining data
samples at the time slot t.
Theorem 2. Given an MEC network G = (V,E), a single

time slot t, a set N of physical objects, and a set Rt of
synchronization requests, each synchronization request
rn,t ∈ Rt of object n has an,t units of data samples
uploaded at time slot t, and the utility gain function
hn,t(·). There is a randomized algorithm, Algorithm 1,
for the static digital twin synchronization problem.
The approximation ratio of the proposed randomized
algorithm is 1

2 , and the amount of computing resource
consumed by any cloudlet is no more than twice its ca-
pacity, with a high probability of min{1− 1

|Rt| , 1−
1

|V |},
provided that ÕPT ≥ 8γ ln |Rt| and min{capv | v ∈
V } ≥ 6γ ln |V |, where ÕPT is the optimal fractional
solution by LP (2) and γ is a constant given by Eq. (8).

Proof We start by analyzing the approximation ratio of the
randomized algorithm.

Denote by OPT the optimal solution by the ILP formu-
lation (2), and ÕPT the optimal fractional solution by its LP.
Because the problem of concern is a maximization problem,
we have ÕPT ≥ OPT . Recall that x̃n,v,k(t) ∈ [0, 1] is a real
value obtained by ÕPT , while we set x̂n,v,k(t) as 1 with the
probability of x̃n,v,k(t), and we set x̂n,v,k(t) as 0 otherwise.

Let zn,v,k(t) =
hn,t(k)
γ · x̂n,v,k(t) be a random vari-

able deriving from random variable x̂n,v,k(t). We observe
that zn,v,k(t) is hn,t(k)

γ with probability x̃n,v,k(t); otherwise,
zn,v,k(t) is 0. Thus, we have 0 ≤ zn,v,k(t) ≤ 1, because
hn,t(k)
γ · x̂n,v,k(t) ≤ hn,t(k)

max{hn,t(an,t) | ∀n∈N (Rt)} ≤ 1. The

expected value of zn,v,k(t) is E[zn,v,k(t)] =
hn,t(k)
γ · x̃n,v,k(t).

We then have

E[
∑

n∈N (Rt)

∑
v∈V

an,t∑
k=1

zn,v,k(t)]

=
∑

n∈N (Rt)

∑
v∈V

an,t∑
k=1

hn,t(k) · x̃n,v,k(t)
γ

=
ÕPT

γ
. (9)

Let α be a constant with 0 < α < 1. By Chernoff
Bounds [34], we have

Pr[
∑

n∈N (Rt)

∑
v∈V

an,t∑
k=1

hn,t(k) · x̂n,v,k(t) ≤ (1− α) ·OPT ]

≤Pr[
∑

n∈N (Rt)

∑
v∈V

an,t∑
k=1

hn,t(k) · x̂n,v,k(t) ≤ (1− α) · ÕPT ],

because ÕPT ≥ OPT

=Pr[
∑

n∈N (Rt)

∑
v∈V

an,t∑
k=1

zn,v,k(t) ≤ (1− α) · ÕPT
γ

],

by zn,v,k(t) = hn,t(k) · x̂n,v,k(t)

=Pr[
∑

n∈N (Rt)

Zn≤(1−α)· ÕPT
γ

], let Zn=
∑
v∈V

an,t∑
k=1

zn,v,k(t)

≤exp(−α
2 · ÕPT
2γ

), by the Chernoff Bounds [34]. (10)

Assuming that exp(−α
2·ÕPT
2γ ) ≤ 1

|Rt| with 0 < α < 1,

we have α ≥
√

2γ ln |Rt|
ÕPT

. When 1
2 ≤ α < 1, we have√

2γ ln |Rt|
ÕPT

≤ 1
2 , i.e., we must have ÕPT ≥ 8γ ln |Rt|.

Because 1−α ≤ 1
2 , the approximation ratio of Algorithm 1,

is 1
2 with high probability 1− 1

|Rt| , by ÕPT ≥ 8γ ln |Rt|.
We then show the violation of computing capacity on

each cloudlet v ∈ V as follows.
Let qn,v,k(t) be a random variable derived from

random variable x̂n,v,k(t), i.e., qn,v,k(t) =
k·δn,t

γ · x̂n,v,k(t),
and its expectation is E[qn,v,k(t)] =

k·δn,t

γ · x̃n,v,k(t)
with 0 ≤ qn,v,k(t) ≤ 1, because k·δn,t

γ · x̂n,v,k(t) ≤
k·δn,t

max{an,t·δn,t | ∀n∈N (Rt)} ≤ 1.

For each cloudlet v ∈ V , we have

E[
∑

n∈N (Rt)

an,t∑
k=1

qn,v,k(t)]
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=
∑

n∈N (Rt)

an,t∑
k=1

k · δn,t · x̃n,v,k(t)
γ

=
c̃apv
γ

, (11)

where c̃apv is the amount of computing resource consumed
on cloudlet v by LP (2).

From Constraint (3), the computing resource consump-
tion on cloudlet v is

∑
n∈N (Rt)

∑an,t

k=1 k · δn,t · x̂n,v,k(t) by
Algorithm 1. Let λ be a constant with λ > 0. The prob-
ability of violating the computing capacity on any cloudlet
v ∈ V is

Pr[
∨
v∈V

∑
n∈N (Rt)

an,t∑
k=1

k · δn,t · x̂n,v,k(t) ≥ (1 + λ) · capv]

≤Pr[
∨
v∈V

∑
n∈N (Rt)

an,t∑
k=1

k · δn,t · x̂n,v,k(t) ≥ (1 + λ) · c̃apv],

since c̃apv ≤ capv

≤
∑
v∈V

Pr[
∑

n∈N (Rt)

an,t∑
k=1

qn,v,k(t) ≥ (1 + λ) · c̃apv
γ

],

by qn,v,k(t)=
k ·δn,t
γ
·x̂n,v,k(t) and Union Bound Inequality

≤
∑
v∈V

Pr[
∑

n∈N (Rt)

Qn,v ≥ (1 + λ) · c̃apv
γ

],

let Qn,v =
an,t∑
k=1

qn,v,k(t)

≤|V | · exp(−λ
2 · c̃apv

(2 + λ) · γ
),

by Eq. (11) and the Chernoff Bounds [34]. (12)

Now, we set λ ≤ 1, and assume

exp(
−λ2 · c̃apv
(2 + λ) · γ

) ≤ 1

|V |2
. (13)

Because 0 < λ ≤ 1, by Eq. (13), we have
exp(−λ

2·c̃apv
3γ ) ≤ 1

|V |2 . Therefore, we have λ ≥
√

6γ ln |V |
c̃apv

≥√
6γ ln |V |
capv

due to c̃apv ≤ capv , and we also have capv ≥
6γ ln |V | for any cloudlet v ∈ V , i.e., min{capv | ∀v ∈
V } ≥ 6γ ln |V |. This means Eq. (13) holds, provided by
min{capv | ∀v ∈ V } ≥ 6γ ln |V |.

By Eq. (12) and Eq. (13), thus,

Pr[
∨
v∈V

∑
n∈N (Rt)

an,t∑
k=1

k · δn,t · x̂n,v,k(t) ≥ (1 + λ) · capv]

≤|V | · 1

|V |2
=

1

|V |
. (14)

Because 1+λ ≤ 2, the computing resource consumption
on each cloudlet v ∈ V is no more than twice its capacity,
with high probability 1− 1

|V | , provided by min{capv | ∀v ∈
V } ≥ 6γ ln |V |.

Hence, the approximation ratio of Algorithm 1 is 1
2 ,

and the computing resource consumed on each cloudlet v ∈
V is no more than twice its computing capacity, with high
probability min{1 − 1

|Rt| , 1 −
1

|V |}, provided that ÕPT ≥
8γ ln |Rt| and min{capv | v ∈ V } ≥ 6γ ln |V |. ■

5 APPROXIMATION ALGORITHM FOR A SPECIAL
STATIC DIGITAL TWIN SYNCHRONIZATION PROBLEM

In this section, we consider a special static digital
twin synchronization problem where each synchronization
request rn,t can be offloaded to any cloudlet v ∈ V in the
MEC network, which can be achieved by multi-hop com-
munications at the expense of longer communication delays
[28], [39]. Notice that it is common sense that the communi-
cation delay caused by the multi-hop communication within
the MEC network is far less than the delay between any
AP in the MEC network and the remote cloud [20]. Also,
the proposed randomized algorithm is not a deterministic
algorithm, which may cause computing capacity violations
on cloudlets. In the following, we propose a deterministic
approximation algorithm for this special problem without
any capacity violation.

The basic idea for the deterministic approximation al-
gorithm is given as follows.

We first consider a special MEC network that consists
of a single cloudlet v0 only with computing capacity being
the sum of the computing capacities of all cloudlets in V ,
i.e., capv0 =

∑
v∈V capv , and a solution for the problem

with this special MEC network then can be transformed
into a feasible solution to the MEC network with multiple
cloudlets. We formulate an Integer Linear Program (ILP)
solution in this special MEC network, and then propose an
approximate solution based on the ILP solution. We then de-
rive an approximation algorithm for the problem in an MEC
network with multiple cloudlets through a transformation
the approximate solution in the special MEC network.

5.1 ILP formulation for the problem in an MEC network
consisting of a single cloudlet v0 only

Recall thatN (Rt) is the set of objects, with each issuing
a synchronization request in Rt in the beginning of time slot
t. Because each physical object n ∈ N (Rt) uploads an,t units
of data samples in the beginning of the time slot t, let pn,k,t
be the utility gain for model training of DT (n) by utilizing
the kth unit of data samples with 1 ≤ k ≤ an,t at time slot
t, i.e., the utility gain margin for model training of DT (n)
by utilizing k units of data samples, compared with that by
utilizing (k − 1) units of data samples. Then,

pn,k,t = hn,t(k)− hn,t(k − 1). (15)

Let yn,k(t) be a binary variable, and yn,k(t) = 1 means
that the model training ofDT (n) utilizes the kth unit of data
samples with 1 ≤ k ≤ an,t at time slot t; otherwise yn,k(t) =
0. We formulate an ILP for the problem, assuming there is a
single cloudlet v0 with capacity capv0 (=

∑
v∈V capv) in the

MEC network as follows.

Maximize
∑

n∈N (Rt)

an,t∑
k=1

pn,k,t · yn,k(t), (16)

subject to:∑
n∈N (Rt)

an,t∑
k=1

δn,t · yn,k(t) ≤ capv0 , ∀v ∈ V (17)

yn,k(t) ∈ {0, 1}, ∀n ∈ N (Rt), ∀k ∈ [1, an,t], (18)
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where the objective (16) is the total utility gain of synchro-
nization requests processed in cloudlet v0. Constraint (17)
indicates the computing capacity constraint on cloudlet v0.

5.2 Approximation algorithm

We propose an approximate solution to the problem
where it exists a single cloudlet v0 in the MEC network.
Built upon the solution for this special case, we then devise
an approximation algorithm for the problem with multiple
cloudlets in the MEC network.

We first devise an approximation algorithm for the
problem of concern where it exists a single cloudlet v0,
via reducing it to the knapsack problem [14] as follows.
The cloudlet v0 is treated as a bin possessing capacity
capv0 =

∑
v∈V capv . The kth unit of data samples in each

synchronization request of each object n ∈ N is treated as
an item in,k associated with a profit pn,k,t by Eq. (15) and
size of δn,t, i.e., the computing resource demand for utilizing
the kth unit of retraining data samples in each request. The
knapsack problem is to maximize the total collected profit
through packing items into the bin, considering its capacity.
We observe this problem is equivalent to the knapsack
problem. By adopting the approximation algorithm [14], we
obtain an approximate solution to the problem when there
is a single cloudlet v0 only, i.e., {yn,k(t) | ∀n ∈ N (Rt),∀k ∈
[1, an,t]}.

We then construct a solution A for the problem with
multiple cloudlets, by setting the number bn,t of units of
retraining data sample for each object n ∈ N (Rt) with
bn,t =

∑an,t

k=1 yn,k(t), and A is a set of requests with bn,t ≥ 1.
However, directly assigning requests in A to cloudlets in V
may cause resource violations, because A is derived from
the problem when there is only a single cloudlet v0 with
capv0 =

∑
v∈V capv .

We finally show how to implement requests in A on
cloudlets to avoid resource violations through dividing set
A into two disjoint subsets A1 and A2, respectively. We sort
cloudlets in V in non-increasing order of their computing
capacity. For simplicity, let v1, v2, . . . , v|V | be the sorted
cloudlet sequence with capv1 ≥ capv2 ≥ · · · ≥ capv|V | . We
also sort synchronization requests in A in non-increasing or-
der of bn,t - the number of units of retraining data samples.
Let rn1,t, rn2,t, . . . , rn|A|,t be the sorted request sequence
with bn1,t ≥ bn2,t ≥ · · · ≥ bn|A|,t. We then assign the sorted
requests in A to cloudlets one by one as follows.

Initially, set A1 and A2 are empty. We first consider
assigning requests in A to cloudlet v1 one by one, until
after assigning request rnL,t with 1 ≤ L ≤ |A|, cloudlet
v1 has no residual computing resource (i.e., its computing
resource consumption is exactly its computing capacity),
or its computing capacity is violated (i.e., its computing
resource consumption is more than its computing capacity).
If assigning request rnl,t to cloudlet v1 results in no resource
violation with 1 ≤ l ≤ L, we add request rnl,t to set
A1; otherwise, we add request rnl,t to set A2. We then
consider assigning the rest requests one by one to cloudlet
v2, similarly. The procedure continues until all requests have
been assigned. Note that all requests in A can be assigned
to cloudlets V , because the solution A is for the problem
of concern with the single cloudlet v0 under the computing

Algorithm 2 Approximation algorithm for a special static
digital twin synchronization problem
Input: Given an MEC network G = (V,E), a single time

slot t, a set N of physical objects, a set Rt of synchro-
nization requests, and the utility gain function hn,t(·),
each request rn,t ∈ Rt of object n has an,t units of data
samples uploaded in the beginning of time slot t.

Output: A solution to maximize the total utility gain of
synchronization requests at time slot t.

1: Create a cloudlet v0 with computing capacity capv0 =∑
v∈V capv ;

2: for each synchronization request rn,t ∈ Rt do
3: for each k ∈ [1, an,t] do
4: Create an item in,k, with a profit pn,k,t defined in

Eq. (15) and a size δn,t;
5: end for
6: end for
7: Obtain an approximate solution {yn,k(t) | ∀n ∈
N (Rt),∀k ∈ [1, an,t]} to the problem when there is a
single cloudlet v0 only, by invoking the approximation
algorithm in [14];

8: Find a solution A by setting the number bn,t of units of
retraining data samples for each object n ∈ N (Rt) with
bn,t =

∑an,t

k=1 yn,k(t);
9: Sort cloudlets in V in non-increasing order of their

computing capacity;
10: Sort requests in A in non-increasing order of their bn,t;
11: A1 ← ∅; A2 ← ∅; j ← 1;
12: for each request rn,t ∈ A do
13: Assign request rn,t to cloudlet vj with bn,t units of

retraining data samples;
14: if cloudlet vj has its computing capacity violated

then
15: A2 ← A2 ∪ {rn,t}; j ← j + 1;
16: else if cloudlet vj has no residual computing resource

then
17: A1 ← A1 ∪ {rn,t}; j ← j + 1;
18: else
19: A1 ← A1 ∪ {rn,t};
20: end if;
21: end for
22: if

∑
rn,t∈A1

hn,t(bn,t) >
∑
rn,t∈A2

hn,t(bn,t) then
23: return A1;
24: else
25: return A2;
26: end if.

capacity of capv0 (=
∑
v∈V capv), and computing capacity

violations are allowed. The set A has been divided into
two disjoint subsets A1 and A2 with A = A1 ∪ A2 and
A1 ∩ A2 = ∅. The approximation algorithm chooses one of
them with a larger total utility as the approximate solution
to the problem.

The proposed approximation algorithm for the special
static digital twin synchronization problem is detailed in
Algorithm 2.

5.3 Algorithm analysis

The rest is to analyze the performance of Algorithm 2,
in terms of its approximation ratio and time complexity.
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Lemma 1. Given the utility gain pn,k,t, which is defined in
Eq. (15), for utilizing the kth unit of retraining data
samples for request rn,t, we have pn,k,t ≥ pn,k′,t with
1 ≤ k < k′ ≤ an,t.

Proof By Eq. (15), we have

pn,k,t − pn,k′,t =hn,t(k)− hn,t(k − 1)

− (hn,t(k
′)− hn,t(k′ − 1)). (19)

Recall that the utility gain function hn,t(·) is assumed
to be submodular, therefore, we have pn,k,t ≥ pn,k′,t with
1 ≤ k < k′ ≤ an,t. ■

Lemma 2. Given an ILP solution (16) to the problem when
there is only a single cloudlet v0, i.e., {yn,k(t) | ∀n ∈
N (Rt),∀k ∈ [1, an,t]}, let bn,t be the number of units of
retraining data samples for synchronization request rn,t
by the ILP solution (16), i.e., bn,t =

∑an,t

k=1 yn,k(t). Then,
for each synchronization request rn,t with n ∈ N (Rt),
its utility gain by the ILP solution (16) is hn,t(bn,t), i.e.,∑an,t

k=1 pn,k,t · yn,k(t) = hn,t(bn,t).

Proof Assuming that bn,t = 0, i.e., yn,k(t) = 0,∀k ∈
[1, an,t], the utility gain of request rn,t is

∑an,t

k=1 pn,k,t ·
yn,k(t) = hn,t(0) = 0. This means that synchronization
request rn,t is rejected.

We now assume that bn,t = 1, i.e., it exists a value of
k with 1 ≤ k ≤ an,t, such that yn,k(t) = 1, while yn,k′ =
0,∀k′ ∈ [1, an,t] with k′ ̸= k. We claim that pn,k,t = pn,1,t =
hn,t(1) by distinguishing it into two cases.

Case 1. If pn,k,t > pn,1,t, by Lemma 1, we can see
pn,k,t ≤ pn,1,t because 1 ≤ k ≤ an,t, which results in a
contradiction.

Case 2. Otherwise (pn,k,t < pn,1,t), we have that k > 1
by Lemma 1, i.e., the kth unit of data samples is input for
its model retraining with k > 1, instead of the first one.
The computing resource demands of each unit of retraining
data samples of rn,t are identical at time slot t, i.e., δn,t.
Then with pn,k,t < pn,1,t, the ILP solution (16) can always
replace the kth unit of data samples with the first one to
obtain a higher utility gain without violating any resource
capacity, i.e., set yn,1(t) = 1 and yn,k(t) = 0. This results in
a contradiction. We thus have pn,k,t = pn,1,t = hn,t(1), i.e.,∑an,t

k=1 pn,k,t · yn,k(t) = pn,1,t = hn,t(1).
We can show that for any bn,t with 0 ≤ bn,t ≤ an,t,∑an,t

k=1 pn,k,t · yn,k(t) =
∑bn,t

k=1 pn,k,t similarly. Recall that
hn,t(0) = 0. By the definition (15) of pn,k,t,

an,t∑
k=1

pn,k,t · yn,k(t) =
bn,t∑
k=1

pn,k,t

= hn,t(1)− hn,t(0) + hn,t(2)− hn,t(1)
+ · · ·+ hn,t(bn,t)− hn,t(bn,t − 1) = hn,t(bn,t). (20)

The lemma then follows. ■

Lemma 3. The ILP formulation (16) delivers an optimal so-
lution to the special static digital twin synchronization
problem where it exists a single cloudlet v0 in an MEC
network.

Proof Given an ILP solution (16) to the problem of concern
where it exists a single cloudlet v0, i.e., {yn,k(t) | ∀n ∈

N (Rt),∀k ∈ [1, an,t]}, and bn,t the number of units of
retraining data samples for each request rn,t by the ILP
solution, we have that the solution value of the ILP is∑
n∈N (Rt)

∑an,t

k=1 pn,k,t · yn,k(t) =
∑
n∈N (Rt)

hn,t(bn,t) by
Lemma 2. Thus, the lemma follows. ■

Theorem 3. Given an MEC network G = (V,E), a single
time slot t, a set N of physical objects, and a set Rt of
synchronization requests, each synchronization request
rn,t ∈ Rt of object n has an,t units of data samples
uploaded at the time slot, and the utility gain function
hn,t(·). There is an approximation algorithm with the
approximation ratio of ( 1−ϵ2 ), Algorithm 2, for the
special static digital twin synchronization problem. The
algorithm takes O(

∑
n∈N (Rt)

an,t · log 1
ϵ + 1

ϵ4 + |Rt| ·
log |Rt|+ |V | · log |V |) time, where ϵ is a constant with
0 < ϵ < 1, and

∑
n∈N (Rt)

an,t is the total number of
units of data samples of all synchronization requests.

Proof Denote by OPT1 the optimal solution to the spe-
cial static digital twin synchronization problem. Denote by
OPT2 the optimal solution to the special problem when
there is only a single cloudlet v0 with capacity capv0 =∑
v∈V capv . We have OPT2 ≥ OPT1.

Recall that A is the set of synchronization requests with
the determined number bn,t of units of retraining data sam-
ples for each request by Algorithm 2 for the special prob-
lem where it exists a single cloudlet v0 in the MEC network.
Denote by U(A) the total utility gain from synchronization
requests in A. We have U(A) ≥ (1−ϵ) ·OPT2, where A with
an approximation ratio of (1−ϵ) is obtained, by invoking the
approximation algorithm [14], where ϵ is a given constant
with 0 < ϵ < 1. We then have U(A) ≥ (1 − ϵ) · OPT1
due to that OPT2 ≥ OPT1. We further divide set A into
two disjoint subsets A1 and A2, and denote by U(A1) and
U(A2) the utility gain derived fromA1 andA2, respectively.
We choose the set between A1 and A2 with a larger utility
gain, we then have

max{U(A1), U(A2)} ≥
1

2
· U(A) ≥ 1− ϵ

2
·OPT1. (21)

Recall that a synchronization request rn,t is added to
set A1 if its assignment to a cloudlet causes no computing
capacity violation. Meanwhile, up to one request is added
to set A2 for each cloudlet v ∈ V , because cloudlet v
is excluded from implementing any more request, if its
computing capacity is violated with the assignment of
request rn,t. Also, each cloudlet is considered to possess
sufficient computing resource to process model retraining of
any request rn,t with an,t units of data samples. Therefore,
assigning the requests in either A1 or A2 to cloudlets V will
not cause any computing resource violation.

The rest is to analyze the time complexity of
Algorithm 2. It invokes algorithm [14] that takes
O(

∑
n∈N (Rt)

an,t · log 1
ϵ + 1

ϵ4 ) time. Sorting all requests in
A takes O(|Rt| · log |Rt|) time, and sorting cloudlets takes
O(|V | · log |V |) time. The proposed algorithm thus takes
O(

∑
n∈N (Rt)

an,t · log 1
ϵ +

1
ϵ4 + |Rt| · log |Rt|+ |V | · log |V |)

time. ■
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6 ONLINE ALGORITHM FOR THE DYNAMIC DIGITAL
TWIN SYNCHRONIZATION PROBLEM

In this section, we study the dynamic digital twin syn-
chronization problem by incorporating system dynamics.
For a given time horizon divided into equal time slots, a
set of synchronization requests is issued in the beginning
of each time slot without any knowledge of future synchro-
nization requests. Each synchronization request rn,t has an,t
units of newly uploaded data samples for retraining, along
with a utility gain function hn,t(·) based on the current
DNN model retrained in previous time slots. We devise an
efficient online algorithm for the problem as follows.

The general strategy is that an initial solution to max-
imize the total utility gain at time slot t is obtained, by
invoking Algorithm 1. However, this solution is likely to
cause resource violation by Theorem 2. If it does not cause
any resource violation, it is the final solution to schedule
synchronization requests at time slot t. Otherwise, this ini-
tial solution needs to be refined in order to become a feasible
solution for the problem, which is given as follows.

Denote by Rinitalv,t the set of synchronization requests
assigned to cloudlet v ∈ V at time slot t by the initial
solution, and for each request rn,t ∈ Rinitalv,t , let bn,t be
its determined number of units of retraining data samples
with 1 ≤ bn,t ≤ an,t. We define the marginal utility loss
∆ψn,t(bn,t) of reducing one unit of retraining data samples
for request rn,t with bn,t ≥ 1 as follows.

∆ψn,t(bn,t) = hn,t(bn,t)− hn,t(bn,t − 1). (22)

We remove the resource violation in cloudlets one by
one. If the capacity of cloudlet v ∈ V is not violated, we
do nothing. Otherwise, we reduce the number of units of
retraining data samples for requests in Rinitalv,t one by one
until there is no computing capacity violation on cloudlet v
anymore. Within each round, we first calculate the marginal
utility loss ∆ψn,t(bn,t) of each request rn,t ∈ Rinitalv,t with
bn,t ≥ 1. We then reduce one unit of retraining data samples
for request rn′,t with the least marginal utility loss, i.e.,
∆ψn′,t(bn′,t) = min{∆ψn,t(bn,t) | rn,t ∈ Rinitalv,t }, while
replacing bn′,t by bn′,t − 1. We will remove request rn′,t

from Rinitalv,t if bn′,t = 0, i.e., request rn′,t is rejected. This
procedure continues until no capacity violation on cloudlet
v happens. The solution obtained is the final solution to the
problem at time slot t.

The detailed online algorithm for the dynamic digital
twin synchronization problem is in Algorithm 3.

We now claim that the proposed online algorithm,
Algorithm 3, delivers a feasible solution to the dynamic
digital twin synchronization problem. It can be seen that an
initial solution of Algorithm 3 at each time slot t ∈ T is ob-
tained through invoking Algorithm 1. We observe that this
initial solution may cause resource capacity violations on
cloudlets by Theorem 2. To avoid any violation by refining
the solution, we can reduce the number of retraining data
samples of synchronization requests assigned to a cloudlet
iteratively until no capacity violation in any cloudlet exists.
Therefore, Algorithm 3 delivers a feasible online solution
to the dynamic digital twin synchronization problem.

Algorithm 3 Online algorithm for the dynamic digital twin
synchronization problem
Input: Given an MEC network G = (V,E), a finite time

horizon T , a set N of physical objects, a set Rt of
synchronization requests at each time slot t ∈ T without
any future knowledge, each request rn,t ∈ Rt has an,t
units of data samples uploaded at each time slot t with
the utility gain function hn,t(·).

Output: Maximize the accumulative utility gain of synchro-
nization requests during T .

1: for each time slot t ∈ T do
2: Obtain the initial solution via invoking Algorithm 1

at time slot t;
3: for each cloudlet v ∈ V do
4: while cloudlet v has its computing capacity vio-

lated do
5: for each request rn,t ∈ Rinitalv,t with bn,t ≥ 1 do
6: Calculate the marginal utility loss ∆ψn,t(bn,t)

of the request;
7: end for
8: Identify request rn′,t ∈ Rinitalv,t with the least

marginal utility loss ∆ψn′,t(bn′,t);
9: Update bn′,t ← bn′,t − 1;

10: if bn′,t = 0 then
11: Rinitalv,t ← Rinitalv,t \{rn′,t}
12: end if;
13: end while
14: end for
15: end for
16: return An online solution to the dynamic digital twin

synchronization problem;

7 PERFORMANCE EVALUATION

In this section, we evaluated the performance of the
proposed algorithms for the problems of digital twin syn-
chronization in an MEC network. We also investigated the
impacts of important parameters on the performance of the
proposed algorithms.

7.1 Experimental Settings
We consider a 1 × 1 km2 geographical area [41], in

which there are 100 cloudlets deployed to form a 10 × 10
grid MEC network [19]. Each cloudlet is co-located with an
AP, and the maximum transmission distance of each AP is
150m [41]. Each cloudlet has a computing capacity ranging
from 1, 000MHz to 5, 000MHz [45]. There are 1, 000 physical
objects randomly scattered over the defined geographical
area, and each physical object can upload its data to a
cloudlet for establishing its digital twin within the maxi-
mum transmission distance of the AP co-located with the
cloudlet. The digital twin of each physical object is placed
in its nearest cloudlet.

There are 10 time slots. With regard to the data drift, the
tasks of digital twins are to continually learn to recognize
the handwritten digits in the dataset MNIST [16]. Each
physical object n ∈ N uploads an,t units of data samples
in the beginning of each time slot t, where an,t is randomly
set within [4, 10], and we set a unit of data samples as a
minibatch containing 128 samples from the MNIST dataset.
The computing resource consumption for model retraining
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Fig. 2. Performance of different algorithms for the static digital twin synchronization problem.

with one unit of data samples ranges from 50MHz to
150MHz. The model accuracy Accuracy(n, t, bn,t) in Eq. (1)
is obtained by invoking the continual learning algorithm
LwF [24] on an open-source continual learning framework
(Avalanche [30]). The framework is based on a Python emu-
lator and implemented using PyTorch. The neural network
for each digital twin is set up as a Multilayer Perceptron
(MLP) with three hidden layers, where the hidden layer size
is 256, and the drop rate is 0.5. For each model retraining,
the number of training epochs is 10, and the learning rate
is 0.001. The parameter ϵ for Algorithm 2 is set as 0.5 by
Theorem 3.

To evaluate the performance of Algorithm 1, referred
to as Alg.1, for the static digital twin synchronization prob-
lem, we consider four benchmark algorithms as follows.

Utility Heu: It is a utility-based heuristic algorithm
in [2] to maximize the total utility, through jointly consid-
ering selecting services, allocating resources and offloading
tasks. Following the spirit of [2], Utility Heu first assigns
synchronization requests to cloudlets by retraining models
of digital twins with all their data samples, allowing ca-
pacity violations. It then reduces the number of units of
retraining data samples for synchronization requests with
the least resource efficiency one by one until the capacities of
cloudlets are not violated, where the resource efficiency of
reducing a unit of retraining data samples from synchro-
nization request rn,t with bn,t (≥ 1) units of data samples is
∆ψn,t(bn,t)

δn,t
, i.e., the ratio of the marginal utility loss defined

in Eq. (22) to its consumed computing resource.
MaxUtility: It assigns synchronization requests to

cloudlets one by one iteratively, in which a synchronization
request is admitted if its model is retrained with all its
uploaded data samples to obtain the maximum utility gain
of the request. Then it assigns the synchronization request
to a random cloudlet with sufficient residual computing
resource. This procedure continues until no more synchro-
nization request can be assigned to any cloudlet.

MaxAdmission: It aims to maximize the number of
admitted synchronization requests, through assigning as
many synchronization requests as possible to cloudlets.
Especially, it first assumes each request only utilizes one
unit of retraining data samples, and assigns requests one by
one to a random cloudlet with sufficient residual computing
resource iteratively. If it cannot admit any more request, the
procedure terminates; otherwise, it augments the utility gain

of requests, by considering cloudlets one by one. That is, for
each cloudlet with sufficient residual computing resource,
it iteratively augments the utility gain of a random request
assigned to the cloudlet with as much retraining data of
the request as possible, until the cloudlet has no more
sufficient residual computing resource for any such utility
augmentation.

LP: It is the Linear Program solution (2), which is
a relaxation of the ILP solution to the static digital twin
synchronization problem, as an upper bound on its optimal
solution.

Recall that we assume each synchronization request rn,t
can be offloaded to any cloudlet, i.e., V(n) = V , in the
special static digital twin synchronization problem. To eval-
uate the performance of Algorithm 2, referred to as Alg.2,
for the special static digital twin synchronization problem,
we consider four benchmark algorithms: Utility Heu s,
MaxUtility s, MaxAdmission s and LP s, which are de-
rived from Utility Heu, MaxUtility, MaxAdmission and
LP, respectively, by letting V(n) = V .

To evaluate the performance of Algorithm 3, referred
to as Alg.3, for the dynamic digital twin synchroniza-
tion problem, we consider three benchmark algorithms:
Utility Heu on, MaxUtility on and MaxAdmission on,
by invoking Utility Heu, MaxUtility and MaxAdmission
and at each time slot, respectively.

The result in each figure is the mean of the results of
15 different MEC instances with the same network size.
The running time of each algorithm is based on a desktop
with an Octa-Core Intel(R) Xeon(R) CPU @ 2.30GHz, 8G
RAM. It is noted that the running time of algorithms shown
in the figures does not include the model retraining time.
Unless otherwise specified, we adopt the above-mentioned
parameters by default.

7.2 Algorithm performance for the static digital twin
synchronization problem

We first evaluated the performance of algorithm Alg.1
for the static digital twin synchronization problem against
algorithms Utility Heu, MaxUtility, MaxAdmission and
LP, via varying the number of synchronization requests
from 100 to 1, 000.

Fig. 2 plots the performance of different algorithms,
where the cloudlet utilization ratio is the amount of com-
puting resource consumed of a cloudlet to its capac-
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Fig. 3. Performance of Alg.1 for the static digital twin synchronization
problem by varying the number an,t of units of uploaded data samples
of each request.
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Fig. 4. Performance of different algorithms for the special static digital
twin synchronization problem.

ity. Fig. 2(a) shows that algorithm Alg.1 achieves near-
optimal performance, referring to LP. When the number of
synchronization requests reaches 1, 000, the accumulative
utility by MaxUtility is 31.1% of that by Alg.1, while
Alg.1 outperforms Utility Heu by 16.9% and outperforms
MaxAdmission by 27.1%, respectively. From Fig. 2(b), it can
be observed that Alg.1 takes the longest running time, be-
cause of solving LP (2) and conducting randomized round-
ing. We can observe from Fig. 2(c) that the actual capacity
violation on a cloudlet is no greater than 12.4%, which is
moderate. Fig. 2 indicates that algorithm Alg.1 is promising,
compared with the benchmarks, because Alg.1 determines
the number of units of retraining data samples for each
request efficiently, preserving the synchronization of digital
twins and their objects.

The rest is to investigate the impact of the number an,t
of units of uploaded data samples of each request on the
performance of algorithm Alg.1, by setting an,t = 4, 6, 8,
and 10, respectively. Fig. 3(a) demonstrates the accumulative
utility of Alg.1 when an,t = 10 is 11.4% higher than that by
itself when an,t = 4 with 1,000 synchronization requests.
The justification is that more data samples uploaded by
objects can leverage the synchronizations between digital
twins and their objects, improving digital twin service qual-
ity. Fig. 3(b) shows that algorithm Alg.1 when an,t = 10
takes the longest running time, because more data samples
of each synchronization request are to be considered for its
model retraining.

7.3 Algorithm performance for the special static digital
twin synchronization problem

We then studied the performance of algorithm Alg.2
for the special static digital twin synchronization prob-
lem against algorithms Utility Heu s, MaxUtility s,
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Fig. 5. Performance of Alg.2 for the special static digital twin synchro-
nization problem by varying the number an,t of units of uploaded data
samples of each request.
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Fig. 6. Performance of different algorithms for the dynamic digital twin
synchronization problem.

MaxAdmission s and LP s, via varying the number of
synchronization requests from 100 to 1, 000.

It can be seen from Fig. 4(a) that when the num-
ber of synchronization requests is 1, 000, the performance
by Alg.2 is 96.4% of that by LP s, while the perfor-
mance by MaxUtility s is 43.6% of that by Alg.2. Also,
Alg.2 outperforms Utility Heu s by 13.2% and outper-
forms MaxAdmission s by 20.7%, with 1, 000 requests,
respectively. Fig. 4(b) illustrates that Alg.2 takes a longer
running time than Utility Heu s, MaxUtility s and
MaxAdmission s, due to invoking the approximation al-
gorithm in [14]. Fig. 4 depicts that algorithm Alg.2 is
promising, and the rationale behind is that Alg.2 efficiently
utilizes the computing resource in all cloudlets to facilitate
the model retraining of different synchronization requests.

We also studied the impact of the number an,t of units
of uploaded data samples of each request on the perfor-
mance of Alg.2, by setting an,t = 4, 6, 8 and 10, respectively.
Fig. 5 demonstrates the accumulative utility and running
times of algorithm Alg.2, through varying the values of
an,t. Considering there are 1, 000 synchronization requests,
the results in Fig. 5(a) show that the accumulative utility
by Alg.2 when an,t = 4 is 84.3% of that of itself when
an,t = 10. This is because Alg.2 can make use of more data
samples of objects for model retraining.

7.4 Algorithm performance for the dynamic digital twin
synchronization problem

We finally investigated the performance of algorithm
Alg.3 for the dynamic digital twin synchronization problem
against algorithms Utility Heu on, MaxUtility on and
MaxAdmission on, via varying the number of synchroniza-
tion requests.
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When there are 1, 000 synchronization requests,
Fig. 6(a) indicates that the performance of MaxUtility on
is 48.4% of that of Alg.3, the performance of
MaxAdmission on is 69.6% of that of Alg.3, and the
performance of Utility Heu on is 88.3% of that of Alg.3.
This can be justified by that algorithm Alg.3 delivers an
efficient online method for digital twin synchronization via
continual learning during the monitoring time horizon
without any future knowledge. Fig. 6(b) plots the
performance curves of Alg.3 when the number |T | of
time slots are 2, 4, 6, 8 and 10, respectively. It can be
observed from the figure that the accumulative utility by
Alg.3 when |T | = 2 is 26.8% of that by itself when |T | = 10,
if there are 1,000 synchronization requests. The reason
is that Alg.3 dynamically allocates resources for efficient
digital twin synchronization during the given time horizon,
and the accumulative utility increases with the growth of
the number of time slots.

8 CONCLUSION

In this paper, we investigated digital twin synchro-
nization in MEC environments via continual learning. We
formulated two novel digital twin synchronization prob-
lems and showed their NP-hardness. For the static digital
twin synchronization problem, we first provided an ILP
solution and then proposed a randomized algorithm at the
expense of a moderate resource violation. We also proposed
an approximation algorithm with a provable approxima-
tion ratio for the special static digital twin synchronization
problem. We thirdly developed an online algorithm for the
dynamic digital twin synchronization problem, considering
system dynamics. We finally evaluated the performance of
the proposed algorithms via simulations. Simulation results
demonstrate the proposed algorithms are promising, im-
proving the algorithm performance by no less than 13.2%,
compared with those corresponding benchmarks.
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