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Abstract— The software-defined network (SDN) enabled
mobile edge network greatly facilitates network resource man-
agement and promotes many emerging applications. However,
user mobility may cause the SDN controller to set flow rules
frequently, introduce additional flow setup latency, cause delay
jitter, and undermine latency-sensitive services. Proactive flow
setup is an effective way to eliminate flow setup latency, but
existing work fails to maximize the flow setup hit ratio, a metric
for evaluating the quality of proactive flow setup decisions, which
is critical for latency-sensitive services. In this paper, we study
how to proactively set flow rules to maximize the flow setup hit
ratio under limited available network resources to eliminate the
flow setup latency as much as possible. Then, we formalize the
proactive flow setup problem as two integer linear programming
problems under two typical routing strategies, default routing
and dynamic routing. Both problems are proved to be NP-hard.
To tackle these two problems, we propose a linear programming-
based polynomial-time approximation algorithm for the default
routing case and a greedy-based heuristic algorithm for the
dynamic routing case. Extensive trace-driven experimental and
simulation results verify that our algorithms can improve the flow
setup hit ratio by up to 30.99% compared to existing solutions.

Index Terms— Software-defined networking, mobile edge
computing, 5G, approximation algorithm.

I. INTRODUCTION

RECENTLY, many emerging online applications require
the network to support ultra-low latency communica-

tions, such as augmented reality (AR), virtual reality (VR),
and autonomous driving [1]. According to reports [2], [3], [4],
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Fig. 1. A case of SDMENs. In the network, each network device maintains
a flow table, which stores flow rules for instructing traffic routing and
allocating bandwidth resources. The control plane manages the traffic in
the data plane by setting up flow rules. When a user service flow arrives,
the controller immediately plans a routing path and allocates corresponding
network resources for it by setting up flow rules.

autonomous driving requires no more than 3 ms network
latency, while AR, VR, and industrial automation call for a
network latency of less than 1 ms. To facilitate these promising
applications, 5G is envisioned to provide users with ultra-low
latency services [5].

Mobile edge computing, as a key enabling technology
for 5G, pushes computing resources to the edge close to
the data source, greatly shortening network latency [6], [7].
Online applications can be deployed on the edge cloud to
provide users with ultra-low latency services. As another key
enabling technology of 5G, SDN physically separates the
network control plane from the data plane, greatly simplifying
network management [8], [9]. The control plane has a global
perspective over the entire network, which is convenient to
allocate dedicated network resources for each service flow and
ensure their isolation.

In software-defined mobile edge networks (SDMENs),
as shown in Fig. 1, user mobility is common, especially for
applications such as autonomous driving and in-car entertain-
ment (AR/VR). When a user moves beyond the coverage of
the currently visited small cell, it switches to a new small cell.
This is exacerbated in 5G, due to the adoption of millimeter
wave technology that shrinks the coverage of small cells
[10], [11]. When a user accesses a new small cell, its
traffic needs to wait for the SDN controller to reallocate
bandwidth resources by setting flow rules, which introduces
additional flow setup latency [12], [13]. This causes delay
jitter, deteriorates latency-sensitive services, and worsens the
user experience.
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Fig. 2. Two flow setup processes in SDN. In the reactive flow setup process,
when a new flow arrives, the small cell (as a switch) notifies the controller.
Then, the controller plans a routing path for the flow and sends corresponding
flow rules to the switches on this path. Finally, the flow can be forwarded
after switches installed corresponding flow rules. In this case, the flow needs
to wait for the flow setup process, which introduces additional flow setup
latency. In the proactive flow setup process, before a flow arrives, the controller
proactively plans a routing path for the flow and sends corresponding flow
rules to the switches on the routing path. Then, the switches install these flow
rules. In this case, the flow can be forwarded directly after it arrives, without
introducing additional flow setup latency.

In SDN, the controller can set up flow rules in two ways,
such as reactive and proactive, as shown in Fig. 2. For the
former, the SDN controller reactively sets up flow rules for
newly arrived flow requests, introducing additional flow setup
latency. There has been a series of studies focused on how to
shorten the flow setup latency, such as multi-controller load
balancing [12], [14] and fine-grained flow management [15].
These efforts shorten the flow setup latency and facilitate
traditional applications, but the inevitable flow setup latency
may cause delay jitter, degrading latency-sensitive applica-
tions. The SDN controller can also set up flow rules in a
proactive manner, which is especially important for mobile
scenarios. In this way, the controller proactively sets up flow
rules for each user on its neighboring small cells. Once a user
switches to a neighbor small cell where the flow rules have
been set, its flow can be forwarded directly without introduc-
ing additional flow setup latency. Then, several works have
studied this topic in mobile scenarios [16], [17], [18], [19].
They proactively set up flow rules for each user’s service
flow based on their mobility transition probability, aiming to
minimize TCAM1 occupancy, controller overhead, or save net-
work energy consumption, which greatly improves traditional
applications. However, their objective is to maximize resource
efficiency rather than the flow setup hit ratio (FSHR2), which
is critical for latency-sensitive services.

1Ternary Content Addressable Memory (TCAM) is a limited and precious
network resource on the switch, used to store flow rules and support high-
speed flow rule matching [20], [21].

2FSHR is defined as the hit probability of flow rules set up for a user’s
flow request, which is formalized in Eq. (1). It is a metric for evaluating the
quality of the proactive flow setup decision. A higher FSHR value indicates
a higher probability that the flow setup latency is eliminated, and less delay
jitter is introduced to degrade latency-sensitive services.

In this paper, we study how to proactively set up flow
rules to obtain a high FSHR under limited available TCAM
and bandwidth resources to improve latency-sensitive ser-
vices, which is practical and crucial. Then, we formalize
the proactive flow setup problem as two integer linear pro-
grams under two typical routing strategies, default routing
and dynamic routing.3 Both problems are proven to be
NP-hard. To tackle the default routing case, we propose
an approximation algorithm based on linear programming
(LP) relaxation, a polynomial-time approximation scheme
(PTAS4) in mid-scale networks. To deal with the dynamic
routing case, we propose a greedy-based heuristic algorithm,
a 2-approximation algorithm in a special case. Finally, we use
extensive trace-driven experimental and simulation results to
verify the superiority of our algorithms over existing solutions.

The main contributions of this paper can be summarized as
follows.

• To the best of our knowledge, we are the first to study
how to proactively set up flow rules to maximize the
FSHR under limited available TCAM and bandwidth
resources. Then, we formally constructed this problem
as proactive flow setup problems with default routing and
dynamic routing strategies, aiming to maximize the total
FSHR, and they are proved to be NP-hard.

• To tackle the above two problems, we propose a
polynomial-time approximate algorithm for the default
routing case and an efficient heuristic algorithm for the
dynamic routing case. Moreover, the heuristic algorithm
proved to be a 2-approximation algorithm in a special
case.

• Extensive trace-driven experimental and simulation
results show that the performance of our algorithms is
close to the optimal solution. Compared with existing
solutions, our algorithm can significantly increase the
FSHR and promote latency-sensitive services.

The rest of the paper is organized as follows. Section II
briefly introduces the related work. Section III provides our
motivation. Section IV formalizes the problem we studied
and proves its NP-hardness. An approximate algorithm and
heuristic algorithm are proposed in Sections V and VI, and are
evaluated in Section VII. Section VIII concludes this paper.

II. RELATED WORK

This section divides the related work of flow rule manage-
ment into two categories, such as reactive and proactive.

A. Flow Rule Management in Reactive Manner

In SDN, the control plane manages flow rules in two
ways, such as reactive and proactive. In reactive flow rule
management, after a flow arrives, the controller reactively
plans a routing path for the flow by setting up flow rules, which

3Under the default routing strategy, a flow is assigned a given default routing
path to its destination [22], [23]. Under the dynamic routing strategy, each
flow is dynamically planned a routing path to its destination [15], [24].

4An ε-approximation scheme is a polynomial-time approximation scheme
(PTAS) if its running time is polynomial both in n (the size of the
problem) [25].
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is efficient and widely used. Then, a series of works [12],
[14], [15], [24] investigate how to optimize the reactive flow
rule management. Jin et al. [24] used experimental results
to show that the flow setup process is time-consuming, and
the heavy load on the SDN controller may cause long-tail
flow setup latency. To overcome this problem, [12] proposed
a dynamic multi-controller load balancing algorithm, in which
flow requests are dynamically scheduled among multiple con-
trollers to adapt to the dynamic traffic load. Besides, [15]
proposed approximation algorithms with boundary factors to
efficiently manage flow rules in the data plane to allevi-
ate controller overhead under the limited TCAM capacity.
Moreover, [14] proposes an effective dynamic controller allo-
cation mechanism to minimize the flow setup latency. The
above work significantly facilitates reactive flow rule man-
agement and greatly improves the performance of traditional
applications. However, they inevitably introduce flow setup
latency and fail to support ultra-low latency services with
mobility.

B. Flow Rule Management in Proactive Manner

In the proactive flow rule management, before a flow
arrives, the control plane proactively sets up rules for a
flow, so that the flow can be forwarded directly after arrival,
which avoids introducing flow setup latency. Then, several
research efforts [16], [17], [18], [19], [26] investigate this
topic. First, Hana et al. [26] proposed several prediction
algorithms for predicting user mobility transition probabilities
in cellular networks. Then, Li et al. [16] proposed an efficient
heuristic algorithm to proactively set flow rules on neighboring
small cells for users’ flow requests based on its mobility
transition probability, aiming to minimize TCAM occupancy
while satisfying a given flow setup hit ratio (FSHR). Besides,
Yeunwoong et al. [17] proposed a proactive flow setup algo-
rithm, which prioritizes setting flow rules for latency-sensitive
flows to improve application performance while minimizing
TCAM occupancy. Moreover, to alleviate the controller load,
Maity et al. [18] proposed an effective mechanism to predict
user mobility and determine the optimal controller-switch
assignments to minimize the control plane cost. Finally, for
energy efficiency, Bera et al. [19] proposed a flow rule
placement mechanism to proactively set flow rules for each
user at the location with the greatest transition probability
and minimize the number of activated small cells. The above
studies moderately proactively set up flow rules to improve
application performance while minimizing TCAM occupation,
controller load, and energy consumption. These efforts mod-
erately improve the FSHR, but they aim to maximize resource
efficiency and ignore bandwidth constraints, which prevents
available resources from being fully and efficiently utilized
to maximize the FSHR, which is critical for latency-sensitive
services.

Different from the above studies, we investigate how to
proactively set flow rules to efficiently and fully utilize avail-
able network resources to maximize FSHR, thereby eliminat-
ing flow setup latency as much as possible and improving
services with ultra-low latency requirements.

Fig. 3. An example for explaining motivation.

III. MOTIVATION

In SDMENs, as shown in Fig. 1, each network device
maintains a flow table that stores flow rules, which is responsi-
ble for instructing flow forwarding and allocating bandwidth.
The control plane can dynamically manage flows in the data
plane by setting up flow rules. For the control plane, there
are two ways to set up flow rules, such as reactive and
proactive, as shown in Fig. 2. When a user moves beyond
the coverage of the currently visited small cell, the user needs
to access a new small cell. In the reactive flow setup mode,
the SDN controller needs to set up flow rules for the flow
reactively, which introduces additional flow setup latency. The
experimental results in [27] show that, even in a small-scale
network (10 network devices), the flow setup latency takes
9-18 ms, which causes delay jitter and deteriorates latency-
sensitive services. To make matters worse, when the control
plane consists of multiple controllers, the flow setup latency is
even longer, which may exceed 100 milliseconds [28], which
severely degrades latency-sensitive services. For example,
as shown in Fig. 3, the user i1 is currently accessing small
cell B, and its flow has an end-to-end latency (the time it
takes to transmit a packet from its source to its destination)
of 0.1 ms. The flow setup latency is 100 ms. If the user
switches to small cell A and introduces additional flow setup
latency, then its latency increases sharply to 100.1 ms. This
may seriously violate the AR/VR latency requirement (1 ms),
causing latency jitter and a worse user experience.

An ideal solution is to proactively set up flow rules for
each user’s service flow based on their mobility transition
probability. That is, the control plane sets the flow rules for
the user flow in advance according to its mobility transition
probability. Once the set flow rule hits, the flow setup latency
is eliminated. Obviously, a high flow set hit ratio (FSHR) is
crucial, and the higher its value, the higher the hit probability
of proactively set flow rules. The FSHR is equal to the hit
probability of proactively set flow rules plus the probabil-
ity that the user maintains a connection with the currently
accessed small cell (which has been set up with flow rules).
For example, as shown in Fig. 3, in the next time slot, user
i3 may maintain the connection with the currently accessed
small cell B with probability 0%, and switch to small cells
A and C with probability 80% and 20%. If we proactively
set up flow rules on small cell A for its request, then its
FSHR= 80%+0% = 80%. Obviously, if we proactively set up
flow rules on more small cells (C) for a user’s (i3) request, the
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FSHR is higher. However, the existing work fails to efficiently
and fully utilize network resources to maximize the FSHR.
To illustrate this point, we give an example as follows.

As shown in Fig. 3, there are three users i1, i2, and i3 in
the network. They currently access small cell B and transmit
their traffic to server D at 100 Mbps, 50 Mbps, and 50 Mbps.
We consider that the wireless bandwidth requirements of users
can be satisfied.5 Let P i,s denote the mobility transition
probability of user i (i1, i2, i3) to small cell s (A, B, C) in
the next time slot. In the next time slot, they maintain the
connection with the small cell B with a mobility transition
probability of 10%, 20%, and 0%, that is, P i1,B = 10%,
P i2,B = 20%, P i3,B = 0%. Besides, we have P i1,A = 90%,
P i2,A = 80%, P i3,A = 80%, P i3,C = 20%. In the network,
the available bandwidth on link A → D is 100 Mbps,
the available bandwidth on links B → D and C → D
is 200 Mbps, and the available TCAM on nodes A, B and
C is 3 units.

In this case, Mobi-Flow [19] proactively sets up flow rules
for each user (i1, i2, i3) on the small cell (that is, A) with
the largest transition probability, which takes into account the
TCAM resource constraints and ignores the bandwidth con-
straints, which may violate the capacity constraints. A simple
improved version is to consider the constraints of TCAM and
bandwidth resources, and try to set up flow rules for each
user on the small cell with the largest transition probability
one by one with decreasing transition probability. In this case,
MobiFlow only set up flow rules on small cell A for user i1,
and the total FSHR = P i1,A+P i1,B +P i2,B +P i3,B = 120%.
In fact, proactively set up flow rules on small cell A for users
i2 and i3 instead of i1 can get total FSHR = P i2,A +P i3,A +
P i1,B +P i2,B +P i3,B = 190%. Additionally, proactively set
up flow rules for user i3 on small cell C can further increase
total FSHR by P i3,C = 20%.

The above example inspired us to study how to proactively
set up flow rules, which effectively utilize network resources
to maximize total FSHR. In fact, this problem is challenging
due to limited TCAM and bandwidth resources, heterogeneous
mobility transition probabilities and bandwidth requirements,
and complex network topologies. The above factors make it
difficult to determine to proactively set up flow rules for which
user requests on which small cells. What’s more, dynamic
routing makes the problem more complicated. For example,
as shown in Fig. 2, in the default routing case, the controller
only needs to determine whether to set up the flow rule for a
flow and route the traffic along a default path (e.g., A→ B →
C → E). In the dynamic routing case, the controller needs to
determine whether to set the flow rule for a flow and its routing
path (e.g., A→ B → D → E, or A→ C → D → E).

IV. FORMULATION AND ANALYSIS

In this section, we first provide a network model, then
analyze and formalize the proactive flow setup problem under
two typical routing strategies, and finally prove its complexity.

5This is reasonable because the user experience rate in 5G network is
increased tenfold compared to 4G network, and small cells are deployed ultra-
densely [29].

TABLE I

SUMMARY OF NOTATIONS

A. Network Model

The SDMENs consist of an SDN controller, a set of
nodes, and links. The controller collects status information
over the entire network and is responsible for dynamic traffic
management by setting up flow rules. To eliminate the flow
setup latency, the SDN controller updates the flow rules at
time interval Δt, which proactively sets up the flow rules for
each user’s ongoing service flow.

We abstract the SDMENs as a directed graph G = (V, L),
where V and L indicate the node set and link set. The nodes
include switches, small cells, and edge servers. Each node
u ∈ V has an available TCAM capacity Cu, and each link
(u, v) ∈ L has an available bandwidth capacity Cu,v .

In the network, the user set and small cell set are denoted
as U and S. Each user i ∈ U currently accesses small cell ςi

with a service flow f i = {di, bi}, where di and bi indicate its
destination and required bandwidth. Due to mobility, in the
next time slot, user i may maintain the connection with small
cell ςi or switch to a neighbor small cell s ∈ Si. We use f i,s to
denote the flow of user i on small cell s, then f i,s = {s, di, bi}.
For simplicity, we call f i,s a flow. The transition probability
of each user i from currently accessed small cell to s ∈ Si∪ςi

in the next time slot is denoted as P i,s, which can be obtained
by a modified mobility prediction algorithm [30] (detailed in
Section VII.A). The notations to be used are listed in Table I.

B. Problem Analysis

In SDMEMs, the next time slot, each user i may access to
a small cell s ∈ Si ∪ ςi with probability P i,s, and generate
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flow f i,s. Once a flow f i,s is set with flow rules, then the flow
setup hits; otherwise, the flow setup hit fails. Then the FSHR
of user i can be expressed as

Ri =
∑
s∈Si

P i,sxi,s + P i,ςi

, (1)

where xi,s is a binary decision variable that indicates whether
to proactively set up flow rules for flow f i,s. The second term
implies that the flow setup always hits if user i maintains the
connection with the currently accessed small cell ςi. Naturally,∑

s∈Si∪ςi P i,s = 1. Then, the total FSHR can be expressed as

R =
∑
i∈U

Ri =
∑
i∈U

∑
s∈Si

P i,sxi,s +
∑
i∈U

P i,ςi

. (2)

C. Problem Formulation

Here, we consider two typical routing strategies, called
default routing and dynamic routing. Under the default routing
strategy [22], [23], the SDN controller uses wildcards to set
the default routing path for flows with the same source and
destination. When a new flow arrives and needs to be accepted,
the SDN controller only needs to set up a flow rule on the
small cell it visits to permit it. Then, the flow is forwarded on
the default routing path set with wildcard rules. In this case,
fewer TCAM resources need to be consumed, but the traffic
suffers fewer dynamics.

Under the dynamic routing strategy [15], [24], the SDN
controller uses dedicated flow rules to set the routing path for
each flow, which helps adjust the network traffic and accom-
modate more flows dynamically. However, under this routing
strategy, each flow needs to be set with dedicated flow rules,
which consumes more TCAM resources. These two routing
strategies are designed for different application scenarios6 and
are divided into different 5G network slices. Therefore, these
two routing strategies are considered separately, rather than
coupled. Then, we formally construct the proactive flow setup
problem with default routing and dynamic routing.

1) Proactive Flow Setup and DeFault Routing (PFSDF)
Problem: In the case of default routing, each small cell s
is configured with a default path to each edge server d, which
is denoted as ps,d. Then, we only need to determine whether
to permit each flow f i,s by setting a flow rule on the small
cell s.

Based on the analysis in Section IV-B, we have the objective
function as follows

max
∑
i∈U

∑
s∈Si

P i,sxi,s +
∑
i∈U

P i,ςi

Before setting up flow rules for a flow, we need to check
their network resource requirements can be met. This is to

6The default routing strategy consumes less TCAM resources and is suitable
for scenarios where TCAM resources are scarce, such as IoT scenarios with
massive devices. In this scenario, the TCAM resources allocated to serving
network slices with ultra-low latency requirements are scarce. The dynamic
routing strategy provides higher throughput, and is suitable for scenarios
where bandwidth is scarce, such as scenarios with intensive video services.
In this scenario, the bandwidth resources allocated to service network slices
with ultra-low latency requirements are scarce.

prevent network congestion or TCAM overload caused by
bandwidth and TCAM capacity being exceeded. Therefore,
the objective function is subject to the following constraints.

Capacity constraints: Once a flow f i,s traverses a link
(u, v), bandwidth resources need to be reserved on the link.
The traffic on each link should not exceed its bandwidth
capacity, and the constraints can be expressed as

∑
i∈U

∑
s∈Si

bips,d
u,vx

i,s ≤ Cu,v, ∀(u, v) ∈ L, d = di, (3)

where ps,d
u,v is a binary constant indicates whether path ps,d

traverses link (u, v).
Under the default routing policy, when the SDN controller

sets flow rules for a flow, it only needs to set the flow rules on
the small cell visited by the flow to permit it. The flow rule
on each small cell should not exceed its TCAM capacity, and
the constraints can be expressed as

∑
i∈U

xi,s ≤ Cs, ∀s ∈ S. (4)

Then, PFSDF problem can be formalized as follows

max
∑
i∈U

∑
s∈Si

P i,sxi,s +
∑
i∈U

P i,ςi

s.t. (3), (4),

xi,s ∈ {0, 1}, ∀i ∈ U, s ∈ S
i.

2) Proactive Flow Setup and DYnamic Routing (PFSDY)
Problem: In the case of dynamic routing, each flow is dynam-
ically planned with a routing path. We need to determine
whether to set flow rules for each flow and its routing path.
Then, we have the following constraints.

a) Flow constraints: Once a flow f i,s enters a node
u ∈ V , it leaves that node, unless it is the source node that
generates traffic or it is the destination node that consumes
traffic. The constraints are expressed as

∑
{v|(u,v)∈L}

f i,s
u,v −

∑
{v|(v,u)∈L}

f i,s
v,u =

⎧⎪⎨
⎪⎩

1, if u = s,

−1, if u = di,

0, otherwise,

∀u ∈ V, i ∈ U, s ∈ S
i,

(5)

where f i,s
u,v is a binary variable indicates whether flow f i,s

traverses link (u, v).
b) Capacity constraints: Similar to Eq. (3), the band-

width capacity constraints can be expressed as
∑
i∈U

∑
s∈Si

bif i,s
u,vx

i,s ≤ Cu,v, ∀(u, v) ∈ L. (6)

Under the dynamic routing strategy, each flow requires
dedicated flow rules. Once a flow f i,s traverses a node u,
the SDN controller needs to set a flow rule on the node for
it. The flow rule on each node should not exceed its TCAM
capacity, and the constraints can be expressed as

∑
i∈U

∑
s∈Si

∑
{v|(u,v)∈L}

f i,s
u,vx

i,s ≤ Cu, ∀u ∈ V. (7)
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In summary, PFSDY problem can be formulated as

max
∑
i∈U

∑
s∈Si

P i,sxi,s +
∑
i∈U

P i,ςi

s.t. (5), (6), (7),

xi,s ∈ {0, 1}, f i,s
u,v ∈ {0, 1}, ∀i ∈ U, s ∈ S

i, (u, v) ∈ L.

Obviously, both PFSDF problem and PFSDY problem are
constructed as integer linear programming problems, and solv-
ing such problems is generally complicated. Next, we formally
analyze its complexity.

D. Problem Complexity

Theorem 1: PFSDF problem is NP-hard and has no
FPTAS.7

Proof: See Appendix A. �
Theorem 2: PFSDY problem is NP-hard and has no FPTAS.

Proof: Obviously, PFSDF problem is a special instance of
PFSDY problem, by fixing the routing path of each flow and
setting the available TCAM of nodes other than small cells to
be unlimited. Similar to the proof in Theorem 1, this theorem
can be proved, and it is omitted for brevity. �

The above theorems exclude the polynomial-time optimal
solution, pseudo-polynomial time algorithm, and FPTAS for
PFSDF problem, unless P=NP. This means that maximizing
the total FSHR is hard to achieve under limited TCAM
and bandwidth resources. Although there is a PTAS for
the multi-knapsack problem [25], it can not be applied to
PFSDF problem. Because in this problem, flows may compete
for network resources on links and nodes on their routing
paths, rather than a single knapsack, and each of them may
become a bottleneck. To tackle this problem, we propose a
polynomial-time algorithm with guaranteed performance in the
next section. Moreover, PFSDY problem is more complicated
than PFSDF problem due to dynamic routing. Therefore,
we propose an efficient heuristic algorithm in Section VI.

V. ALGORITHM DESIGN FOR DEFAULT ROUTING

This section designs an algorithm based on LP relaxation
for PFSDF problem and analyzes its performance.

A. Algorithm Design

The designed algorithm consists of two components: an
LP-based relaxation algorithm and a proactive flow setup and
default routing algorithm. The former solves linear program-
ming to inspire flow setup decisions. The latter is responsi-
ble for trying different flow setup decision combinations to
approach the optimal solution.

1) Linear Relaxation: By relaxing the binary variable xi,s

in PFSDF problem, we obtain a LP as follows

max
∑
i∈U

∑
s∈Si

P i,sxi,s +
∑
i∈U

P i,si

s.t. (3), (4),

xi,s ∈ [0, 1], ∀i ∈ U, s ∈ S
i.

7An ε-approximation scheme is a fully polynomial time approximation
scheme (FPTAS) if its running time is polynomial both in n and in 1

ε
[25].

Algorithm 1 LP-Based Algorithm
Input: L: links; V : nodes; Cu,v: available bandwidth; Cu:

available TCAM; ps,d: default routing path; P i,s: transition
probability; F: flow set.

Output: D′: flow set that needs to be setup with flow rules;
R′: flow setup hit ratio.

1: Compute the optimal solution X̃ i,s of LP;
2: XI ← {f i,s|X̃ i,s = 1};
3: XF ← {f i,s|0 < X̃ i,s < 1};
4: R′ ←∑

j∈XI
P i,s;

5: D′ ← XI ;
6: for f i,s ∈ XF do
7: if R′ < P i,s then
8: if constraints (3), (4) are satisfied for f i,s then
9: R′ ← P i,s;

10: D′ ← {f i,s};
11: end if
12: end if
13: end for

2) LP-Based Algorithm: We design an LP-based algorithm
as shown in Algorithm 1, which makes flow setup decisions
based on the optimal solution obtained by solving LP.

In Algorithm 1, we first solve LP to obtain its optimal
solution X̃ i,s. Then, we use XI and XF to record the flows
with positive integer and fractional values in the LP solution.
Based on this, we initialize the best FSHR and the set of flows
that needs to be set up with flow rules. In this operation, only
flows with positive integer values are selected into the flow
set to be set with flow rules, and the corresponding FSHR
is calculated. This operation means that we round down the
optimal solution of the LP, including integer and fractional val-
ues. This is intended to ensure constraints. Finally, we check
whether there is a flow in XF (fractional value) that has an
FSHR greater than the current best solution R′, and satisfies
the capacity constraint (3), (4). If both are satisfied, then we
replace the current best solution and replace the corresponding
flow set.

3) Proactive Flow Setup and Default Routing: The Proac-
tive Flow Setup and DeFault routing (PFS-DF) algorithm is
triggered periodically to deal with user mobility. After being
triggered, the SDN controller updates the small cell currently
accessed by each user and the transition probability of each
user, and then makes proactive flow setup decision. The
detailed process of PFS-DF algorithm is shown in Algorithm 2.
We first define a variable R and a set D to record the best
FSHR and the corresponding flow set, and then initialize the
flow setup decisions, candidate flows, and flow attributes.
Then, we define a variable � to limit the size of the tried
flow combination set, which is determined by the constant
input parameter ε. Further, we try all flow combinations with
elements not exceeding �. If a flow set satisfies the capacity
constraint, then we call Algorithm 1 to utilize the updated
available network resources. Subsequently, we record the best
FSHR and the corresponding flow set. Finally, we make flow
setup decisions based on the recorded best flow set.
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Algorithm 2 Proactive Flow Setup and Default Routing

Input: U: user set; f i: user service flow; Cu,v: available
bandwidth; Cu: available TCAM; ps,d: default routing path;
P i,s: transition probability; ε: constant parameter.

Output: xi,s: flow setup decision.
1: R← 0;
2: D← ∅;
3: xi,s ← 0, ∀i ∈ U, s ∈ Si;
4: F← {f i,s|∀i ∈ U, s ∈ Si};
5: f i,s.src, f i,s.dst, f i,s.bw ← (s, di, bi), ∀i ∈ U, s ∈ Si;
6: d← |L|+ |S|;
7: �← min{	d

ε 
 − (d + 1), n};
8: for all subsets F′ ⊆ F with |F′| ≤ � do
9: if constraints (3), (4) are satisfied for F′ then

10: F′′ ← F− F′;
11: C′u,v ← Cu,v −

∑
fi,s∈F′ bips,di

u,v , ∀(u, v) ∈ L
12: C′s ← Cs −

∑
fi,s∈F′ 1, ∀s ∈ S

13: R′, D′ ← call Algorithm 1 with the updated flow set
F′′ and available network resources C′u,v, C′u;

14: if R <
∑

(i,s)∈F′ P i,s +R′ then
15: R ←∑

(i,s)∈F′ P i,s +R′;
16: D← F′ + D′;
17: end if
18: end if
19: end for
20: for f i,s ∈ D do
21: xi,s ← 1;
22: end for

B. Algorithm Analysis

To facilitate algorithm analysis, we define

ζ = max{|Si|, ∀i ∈ U}. (8)

In a typical cellular network [31], each small cell is sur-
rounded by 6 small cells, where ζ = 6.

Theorem 3: PFS-DF algorithm runs in polynomial time by
setting ε as a constant greater than or equal to d

δ+d+1 , where
δ is an arbitrary positive constant and d = |L|+ |S|.

Proof: As defined in Algorithm 2, � = min{	d
ε 
 −

(d + 1), n}. Since ε ≥ d
δ+d+1 and δ is an positive constant,

� = min{	d
ε 
 − (d + 1), n} = min{	δ
, n} ≤ 	δ
, which

means that � is less than or equal to a constant. Next,
we analyze Algorithm 1. The algorithm first solves the LP,
which can be effectively solved in polynomial time by the
ellipsoid algorithm [32]. Obviously, the rest of Algorithm 1
runs in polynomial time, including initialization parameters
and checking capacity constraints. Therefore, Algorithm 1
runs in polynomial time. Then, we further analyze the
Algorithm 2. The algorithm first needs O(ζ|U|) to initialize
the parameters. Then, the algorithm tries O(n�) flow combina-
tions. Since each flow set can be checked in polynomial time
whether the capacity constraints are satisfied, and Algorithm 1
is polynomial time, Algorithm 2 also runs in polynomial
time. �

Theorem 4: PFS-DF algorithm is a �+1
�+d+1 -approximation

algorithm.

Proof: By treating each link and node as a knapsack,
PFSDF problem is a special case of the multi-dimensional
knapsack problem. The above designed algorithm is proved
to be �+1

�+d+1 -approximation algorithm, please refer to [25] for
details. �

Theorem 5: PFS-DF algorithm is a PTAS, when d does not
exceed a constant κ.

Proof: Generally speaking, each SDN controller is respon-
sible for a limited network scale, so that it can quickly respond
to dynamic requests in the data plane. In such a network, there
are limited network nodes and links, that is, d ≤ κ. In this
case, we analyze the algorithm as follows.

First, we prove that PFS-DF runs in polynomial time for
ε ∈ [0, 1]. We define a constant η = κ

ε − κ. Since d ≤ κ
and � = min{	d

ε 
 − (d + 1), n}, then � ≤ 	d
ε 
 − (d + 1) ≤

	κ
ε 
− (κ+1) ≤ κ

ε −κ ≤ η. That is, � ≤ η. As shown in PFS-
DF algorithm, the parameter ε only affects the number of flow
combinations. Since � ≤ η, the algorithm still tries polynomial
flow combinations. Similar to the proof of Theorem 3, PFS-DF
algorithm still runs in polynomial time.

Next, we prove that PFS-DF algorithm is a 1 − ε-
approximation algorithm. If 	d

ε 
 − (d + 1) ≥ n, then the
PFS-DF algorithm has tried all flow combinations and it is
clear that the optimal solution can be obtained. Otherwise, � =
min{	d

ε 
− (d+1), n} = 	d
ε 
− (d+1). Thus, �+1

�+d+1 ≤ 1− ε.
Based on Theorem 4, our algorithm is a (1−ε)-approximation
algorithm.

�

VI. ALGORITHM DESIGN FOR DYNAMIC ROUTING

In this section, we propose a greedy-based heuristic algo-
rithm for PFSDY problem. The algorithm includes two sub-
functions, i.e., bottleneck bypass routing and bottleneck flow
setup decision. The former is responsible for determining the
routing path of each flow, and the latter greedily tries to set
flow rules for flows on network bottlenecks. The heuristic
algorithm calls both to make flow setup and routing decisions.

A. Bottleneck Bypass Routing

Inspired by the example in Section III, a flow cannot be set
with flow rules when its required network resources cannot be
satisfied. Therefore, we tend to route flows to low-load links
and nodes rather than potential bottlenecks with high loads.
For this purpose, we construct a weighted graph for each flow
based on the physical graph, where the greater the proportion
of available resources consumed, the greater the weight. In this
way, we can find a path that bypasses the bottleneck links and
nodes by finding a path with the smallest weight, using an
existing algorithm (Dijkstra’s algorithm [33]).

1) Construct Weighted Graph: The weighted graph is con-
structed as follows. To ensure capacity constraints, we first
prune those links and nodes in the physical graph that cannot
satisfy the network resource requirements of the flow. Besides,
we need to establish the relationship between network resource
occupancy ratio and link weight. In this way, we can find the
path that bypasses the bottleneck links and nodes by finding
the path with minimum weight.
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Fig. 4. An example shows how to construct a weighted graph based on a
physical graph.

Algorithm 3 Bottleneck Bypass Routing

Input: G = (V, L): physical graph; f i,s: flow; Cu,v: available
bandwidth; Cu: available TCAM.

Output: pi,s: routing path of f i,s.
1: for each link (u, v) ∈ L do
2: if Cu,v ≥ f i,s.bw and Cu ≥ 1 then
3: G′.addedge(u, v);
4: G′.wu,v ← max{ 1

Cu
, bi

Cu,v
};

5: end if
6: end for
7: pi,s ← G′.Dijkstra(f i,s.src, f i,s.dst);

When a flow f i,s traverses a link (u, v), it needs to occupy
the TCAM on node u and the bandwidth on the link, both
of which may be bottleneck resources. Therefore, we assign
a weight to each link as

wu,v = max{ 1
Cu ,

bi

Cu,v
},

if (Cu,v ≥ bi and Cu ≥ 1), ∀(u, v) ∈ L (9)

where Cu,v and Cu indicate the available bandwidth on link
(u, v) and the available TCAM on node u.

To facilitate readers’ understanding, as shown in Fig. 4,
we give a simple example to illustrate how to construct a
weighted graph for a flow based on a physical graph. The
physical graph is shown in Fig. 4(a), and each link is marked
with its available bandwidth. Each node has one unit of TCAM
resource, which is enough to set the flow rules for this flow.
There is a user i in the network, and its service flow is
f i = {D, 1}, which means that its destination is D and
requires 1 unit of bandwidth. We need to reserve network
resources for user i on small cell A, that is, f i,A. Then,
we construct a weighted graph for it as follows. We first
prune those links that fail to satisfy the flow’s network resource
requirements, such as link (A, D). Then, based on Eq. (9),
we assign weight to each link and obtain a weighted graph as
shown in Fig. 4(b). Finally, we can find the path to bypass the
high-load link (potential bottleneck) by finding the path with
the smallest weight, such as A ⇀ 2 ⇀ D.

2) Algorithm Description: The bottleneck bypass routing
algorithm is shown in Algorithm 3. We first construct a
weighted graph based on the physical graph (lines 1-6). Then,
we use the well-known Dijkstra algorithm to find a minimum
weight path for flow f i,s, which traverses low-load links and
nodes.

Algorithm 4 Bottleneck Flow Setup Decision

Input: f i,s: flow; Cu,v: available bandwidth; Cu: available
TCAM; pi,s: routing paths; f i,s

u,v: flow routing decision; F:
candidate flow set; Lu,v: link load factor; Lu: node load
factor.

Output: F′′′: The set of flows that need to be setup with flow
rules.

1: Calculate Φi,s
B and Φi,s

T based on Eqs. (12) and (13);
2: L← {(u, v) ∈ L|Lu,v > 1};
3: N← {u ∈ V |Lu > 1};
4: while L! = ∅ or N! = ∅ do
5: L← argmax(u,v){Lu,v, ∀(u, v) ∈ L};
6: N← argmaxu{Lu, ∀u ∈ V};
7: if LL ≥ LN then
8: L = L− {L};
9: F′ ← {f i,s, f i,s ∈ F|L ∈ pi,s};

10: Sort F′ in descending order of priority index Φi,s
B ;

11: else
12: N = N− {N};
13: F

′ ← {f i,s, f i,s ∈ F|N ∈ pi,s};
14: Sort F′ in descending order of priority index Φi,s

T ;
15: end if
16: F′′ ← ∅;
17: for each flow f i,s ∈ F′ do
18: if the capacity constraint are satisfied for F′′ + f i,s

then
19: F′′ ← F′′ + f i,s;
20: end if
21: end for
22: f i′,s′ ← argmax{P i,s, ∀f i,s ∈ F′};
23: if P i′,s′

>
∑

fi,s∈F′′ P i,s and the capacity constraint is
satisfied for f i′,s′

then
24: F

′′ ← f i′,s′
;

25: end if
26: F′′′ ← F′′′ + F′′;
27: end while

B. Bottleneck Flow Setup Decision

In this section, we design a bottleneck flow setup decision
algorithm, which identifies network bottlenecks and deter-
mines which flows on the network bottlenecks to set flow rules.
Specifically, we first define the load factor to identify network
bottlenecks, and then define the priority indicator to determine
which flows are preferentially set with flow rules.

1) Network Load Factor: To determine the network bottle-
neck, we define the network load factor as follows.

Lu =

∑
fi,s∈F,v|(u,v)∈L f i,s

u,v

Cu , ∀u ∈ V, (10)

Lu,v =

∑
fi,s∈F

f i,s
u,vb

i

Cu,v
, ∀(u, v) ∈ L, (11)

where Lu denotes the node load factor, and Lu,v denotes the
link load factor. The larger the load factor value, the higher
the network load. Once their value exceeds 1, they become
network bottlenecks, that is, their load exceeds their capacity.
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2) Priority Indicator: To determine which flows on the
network bottleneck are preferentially set flow rules, we define
the priority indicator as follows.

Φi,s
B =

P i,s

bi
, ∀i ∈ U, s ∈ S

i, (12)

Φi,s
T = P i,s, ∀i ∈ U, s ∈ S

i, (13)

where Φi,s
B and Φi,s

T are defined based on TCAM and band-
width resources, respectively. The motivation behind Eq. (12)
is that we give priority to setting up flow rules for flows with
high transition probability, which helps to obtain a high FSHR.
Moreover, the fewer bottleneck resources a flow requires, the
higher its priority, which helps to utilize network resources
efficiently.8 The motivation for defining Eq. (13) is similar to
Eq. (12). It should be noted that setting flow rules on a node
for each flow only consumes one unit of TCAM.

3) Algorithm Description: The details of the bottleneck flow
setup decision algorithm as shown in Algorithm 4. We first
calculate the priority indicator for each flow. Then, we obtain
those bottleneck links and nodes. Furthermore, we iteratively
determine which flows on the link or node with the highest
load factor to set flow rules. Specifically, we first obtain the
link and node with the highest load factor. If the bottleneck
with the largest load factor is a link (node), then we get the
flows on this link (node) and sort those flows in descending
order by their priority indicator, and vice versa (lines 7-15).
Further, we determine whether each flow can be set with flow
rules one by one based on capacity constraints (lines 17-21).
If the capacity constraints are satisfied, then this flow can be set
with flow rules. Finally, if a flow can obtain greater benefits
and does not violate the capacity constraint, we replace the
above flow setup decision with this flow (22-25). Finally,
we update the flow set that is determined to be set with flow
rules. This iteration is terminated until all bottleneck links and
nodes have performed the above steps.

The above-designed algorithm is inspired by Ext-Greedy
algorithm in [25]. In this algorithm, we greedily set flow rules
for each flow based on their value density (priority indicator).

C. Proactive Flow Setup and Dynamic Routing

Similar to PFS-DF algorithm, the Proactive Flow Setup
and DYnamic routing (PFS-DY) algorithm is also triggered
periodically to deal with user mobility. The PFS-DY algorithm
makes flow setup and routing decisions based on Algorithm 3
and Algorithm 4. Its details are shown in Algorithm 5.

In the algorithm, we first initialize the flow setup decisions,
flow routing decisions, candidate flow set, and flow attributes
(lines 1-4). Then, we call Algorithm 3 to plan the routing
path for each flow and delete those flows that have no feasible
routing path (lines 6-12). Besides, we calculate the load factors
of nodes and links. Further, we set flow rules for those
flows that do not traverse potential bottleneck links or nodes,
and update available network resources (lines 14-23). Finally,
we call Algorithm 4 to determine which flows on the network

8The probability term in Eq. (12) is distributed in [0-1], and the bandwidth
term bi is in MB and distributed in (0, 1000]. Therefore, such a division
without normalization is acceptable for float-type variables.

Algorithm 5 Proactive Flow Setup and Dynamic Routing

Input: U: user set; f i: user service flow; Cu,v: available
bandwidth; Cu: available TCAM.

Output: xi,s: flow setup decision; f i,s
u,v: flow routing decision.

1: xi,s ← 0, ∀i ∈ U, s ∈ Si;
2: f i,s

u,v ← 0, ∀i ∈ U, s ∈ S
i, (u, v) ∈ L;

3: F← {f i,s|∀i ∈ U, s ∈ Si};
4: f i,s.src, f i,s.dst, f i,s.bw ← (s, di, bi), ∀i ∈ U, s ∈ S

i;
5: while F ! = ∅ do
6: for each flow f i,s ∈ F do
7: pi,s ← call Algorithm 3;
8: f i,s

u,v ← 1, ∀(u, v) ∈ pi,s;
9: if pi,s = NoPath then

10: F← F− f i,s;
11: end if
12: end for
13: Calculate Lu,v and Lu based on Eq. (10) and (11);
14: for each flow f i,s ∈ F do
15: if Lu,v ≤ 1, ∀(u, v) ∈ pi,s then
16: if Lu ≤ 1, ∀u ∈ pi,s then
17: xi,s ← 1;
18: F← F− f i,s;
19: Cu,v ← Cu,v − bi, ∀(u, v) ∈ pi,s;
20: Cu ← Cu − 1, ∀u ∈ pi,s;
21: end if
22: end if
23: end for
24: F′′′ ← call Algorithm 4;
25: xi,s ← 1, ∀(i, s) ∈ F

′′′;
26: F← F− F′′′;
27: Cu,v ← Cu,v − bi, ∀(u, v) ∈ pi,s, f i,s ∈ F′′′;
28: Cu ← Cu − 1, ∀u ∈ pi,s, f i,s ∈ F′′′;
29: end while

bottlenecks should be set flow rules, and update flow setup
decisions and available network resources (lines 24-28). The
algorithm terminates until all flows are set up with flow rules,
or no flow has a feasible routing path.

D. Algorithm Analysis

Theorem 6: PFS-DY algorithm produces a feasible solu-
tion in O(|L||U|2 log |V | + (|L| + |V |) · (|L||U| + |V ||U| +
|U|2 log |U|)).

Proof: We first analyze the feasibility of the solution
produced by PFS-DY algorithm as follows. As shown in
Algorithms 3 and 5, we search for a feasible routing path
for each flow and delete those flows that have no feasible
routing path. A flow can be set with flow rules only if
it has a feasible routing path and thus satisfies the flow
constraints. Besides, as shown in PFS-DY algorithm, we check
the capacity constraints before setting flow rules for a flow.
A flow can be set with flow rules only when the capacity
constraints are met. Based on the above analysis, it is obvious
that PFS-DY algorithm always produces a feasible solution.

We next analyze the complexity of PFS-DY algorithm as
follows. We first analyze the complexity of Algorithm 3,
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which requires O(|L|) to construct a weighted graph, and
O(|L| log |V |) to search for the least weight routing path.
Therefore, the complexity of Algorithm 3 is O(|L| log |V |).
Then, we analyze Algorithm 4, which requires O(|L|+ |V |+
ζ|U|) to calculate the parameters. Then, the algorithm iterates
O(|L| + |V |) times in the worst case. Each iteration runs
in O(|L| + |V | + ζ|U| log ζ|U|). Therefore, its complexity is
O((|L|+ |V |) ·(|L|+ |V |+ζ|U| log ζ|U|)). Finally, we analyze
Algorithm 5, which requires O(ζ|U||L|)) to initialize the flow
setup decision, flow routing decision, candidate flow set, and
flow attributes. Then, the algorithm iterates O(ζU) times in the
worst case. Each iteration runs in O(ζ|L||U| log |V |+ (|L|+
|V |) · (|L|+ |V |+ζ|U| log ζ|U|)). Based on the above analysis
and ζ is a constant, we can conclude that the complexity of
PFS-DY algorithm is O(|L||U|2 log |V |+(|L|+|V |)·(|L||U|+
|V ||U|+ |U|2 log |U|)). �

Theorem 7: PFS-DY algorithm is a 2-approximation algo-
rithm in a special case, in which the topology is a tree, and
there is only one bottleneck link or node.

Proof: In fact, tree topologies are common [34]. For exam-
ple, small cells are connected to macrocells, and macrocells are
connected to the edge server, which forms a tree topology [35].
In a tree network, there is only one feasible shortest path
between each pair of nodes. Therefore, the routing path of
each flow in our algorithm is the same as the routing path
in the optimal solution. Since there is only one bottleneck
link (node) in the network, all flows can be set flow rules
except those that traverse the bottleneck link (node). In this
case, the PFSDY problem is equivalent to the 0-1 knapsack
problem. The Algorithm 4 is designed to make flow setup
decisions for flows on the bottleneck link (node), and it makes
decisions based on their value density (priority indicator). This
algorithm is a modified version of the Ext-Greedy algorithm,
and its approximation ratio is proved to be 2 [25]. �

VII. EVALUATION

In this section, we first present the evaluation settings and
then discuss the simulation and experimental results.

A. Settings

1) Evaluation Environment: We test our algorithms in both
experimental and simulation environments. The experimental
environment is based on our Ryu [36]/Mininet-WiFi [37]
testbed, running Ryu 4.34, OpenFlow v1.3 and OpenVSwitch
v2.3. Mininet-WiFi is an extended version of Mininet [38] for
wireless emulation. Besides, the numerical simulation is based
on Python 3.7. They are run on a server with a 12-core CPU
and 16G RAM, equipped with Ubuntu 18.04 operating system.

2) Topology: The tested network topology refers to the
ITU-T standard [35], in which small cells and macro cells
are connected in a typical Star, or Ring topology [39]. Each
of them contains 4 macro cells (as switches) and 16 small
cells. Specifically, in the Star topology, each macro cell is
directly connected with four small cells, while in the Ring
topology, each macro cell is connected to a ring with four
small cells. Besides, all macro cells are connected to a small
edge cloud (Fat-Tree [40] with 4 Pods). Each small cell covers

a 400m × 400m area [10], and their deployment strategy is
grid-based [19].

3) Mobile Model: In our evaluation, the mobility model is
derived from taxis, and the mobility transition probability is
derived from the taxi data set [41] using a modified Markov-
based mobility prediction algorithm [30].9 The taxi data set
is obtained from the trajectory of 500 taxis in San Francisco
within 30 days. To adapt to our experiment, we selected mobile
data of 1600m × 1600m hotspot area from each data set.

4) Service Flow: The service flow in our experiment is
generated based on a real Internet traffic matrix [42]. The
traffic matrix is collected from the European Research and
Educational Network for 4 months. It contains information
about each service flow, such as its source, destination, and
required bandwidth.

5) Metrics and Parameter Settings: In numerical simu-
lations, we evaluate macro-scale behaviors such as FSHR,
bandwidth utilization, TCAM utilization, and execution time.
There is no need for a packet-level emulator (Mininet-WiFi)
that simulates the micro-scale behavior in the network. In the
experimental evaluation, we evaluate micro-scale behavior,
such as end-to-end latency, which involves the processing
of packets. All the data points are collected from 100 runs.
The flow rule update period Δt = 10.10 Each link has
an available bandwidth α = 10000 (MB), each node has
an available TCAM β = 200 (flow rules)11 and � = 0
(defined in Algorithm 2). The number of users is distributed in
[100-500],12 where each user generates a flow. In the default
routing strategy, each flow uses a shortest path from its source
to its destination as its routing path. For dynamic routing, each
flow dynamically searches for a routing path. Unless otherwise
specified, the above parameters are adopted by default.

6) Solutions to Compare: we compare our algorithms with
the following solutions.

• Mobi-Flow: This algorithm [19] is the state-of-the-art
algorithm for proactive flow setup, which proactively sets

9Note that we need to make slight modifications to adapt the original
location-based mobility prediction algorithm [30] to our small-cell-based
mobility prediction. Specifically, the entire area is divided into multiple
locations according to the coverage of small cells, where each location
corresponds to a small cell. Once a user moves from one location to another,
it means that the user switches from one small cell to another small cell.
Then, we can obtain the historical data of the small cells accessed by the
user and the corresponding time. Further, divide the whole time into time
slots equally, and each time slot corresponds to a small cell (if there are two,
record the latter, which indicates that the user switches to this small cell).
After the above operations, we can obtain the historical information about the
small cell accessed by the user in each time slot. By replacing the location-
based history information with the small-cell-based history in Eq. (1) in [30],
we can obtain our small-cell-based mobility transition probabilities via the
mobility prediction algorithm [30].

10This is suitable for the user to switch to a new small cell every 11.3-50.2 s
in typical mobile scenarios [11]. It should be noted that the smaller the
coverage area of the small cell, the more frequent the user switching, and
in this case, the flow rule update period needs to be smaller.

11In the 5G network, the physical link bandwidth is about 25-50G, and
the device TCAM capacity is about thousands [43]. These physical resources
are divided into network slices to serve various services, and a portion of
the physical resources are available for our mission-critical services, so the
parameter settings are typical and reasonable (most TCAMs are used to serve
massive IoT users).

12This is a realistic density for users with ultra-low latency and mobility
needs, such as vehicle density in autonomous driving (tens to hundreds per
square kilometer) [44].
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up flow rules for each user in the neighbouring small cell
with the largest transition probability.

• MoRule: This algorithm [16] greedily sets up flow rules
for each user in the neighboring small cells.

• Reactive: This algorithm reactively sets up flow rules for
each user’s service flow.

• OPT-DF, OPT-DY: These two algorithms indicate the
optimal solution under default routing and dynamic rout-
ing, and they are obtained by solving PFSDF problem
and PFSDY problem with Gurobi [45] optimizer.

B. Numerical Simulation

1) Compared With the Optimal Solution: Here, we show the
gap between our algorithms and the optimal solutions in total
FSHR and execution time under default and dynamic routing.
The desired performance in the optimal solution is that the
total FSHR is maximized. The mobility transition probability
is generated from the taxi data set. We set α = 1000, β = 50,
which is a case for simulating the small-scale scenario with
limited bandwidth and TCAM resources.13 The simulation
result is shown in Fig. 5.

The total FSHR performance of our algorithm under the
default routing strategy is shown in Fig. 5(a). PFS-DF algo-
rithm is always close to the optimal solution in terms of
total FSHR under the different number of users. Their gap
is no more than 5.08%, and their standard deviation is less
than 2.49. For example, when the number of users is 60,
the total FSHR of the PFS-DF algorithm and the optimal
solution is 49.16 and 50.73, which means that the gap between
them is only 3.09%. The total FSHR performance of our
algorithm under the dynamic routing strategy is shown in
Fig. 5(b). PFS-DY algorithm is also close to the optimal
solution under the different number of users. Their gap is no
more than 0.94%, and their standard deviation is less than 1.16.
Moreover, as shown in Fig. 5(c) and Fig. 5(d), the execution
time of both PFS-DY algorithm and PFS-DF algorithm is
always significantly shorter than that of the optimal solution.
Besides, the execution time of OP-DY algorithm and OP-DF
algorithm increases exponentially, which is unacceptable for
the real world environment. The above results verify that both
PFS-DY and PFS-DF are close to optimal solutions and have
significantly shorter execution times under default routing and
dynamic routing strategies, respectively.

2) Average Flow Setup Hit Ratio: To make the metrics
more intuitive, we next evaluate the algorithms in terms of
average FSHR, rather than total FSHR. The result of different
algorithms under two routing strategies and two network
topologies are shown in Fig. 6.

As shown in Fig. 6(a), the average FSHR of PFS-DF algo-
rithm is significantly higher than that of other algorithms. For
example, when the number of users is 500, the average FSHR
of the PFS-DF, Mobi-Flow, MoRule, and Reactive algorithms
are 73.17%, 57.23%, 51.00%, and 40.69% respectively. This
means that our algorithm can improve FSHR performance by

13Once the bandwidth and TCAM resources are sufficient, then the average
FSHR of our algorithms and the optimal solution is always 100%, and such
result evaluation is meaningless.

Fig. 5. Compared with the optimal solution under two routing strategies.

Fig. 6. Results under two network topologies and two routing strategies.

27.85%, 43.47%, and 79.82% compared to the Mobi-Flow,
MoRule, and Reactive algorithms, respectively. This is because
our algorithm can more efficiently and fully utilize TCAM and
bandwidth resources to serve user requests. Besides, as the
number of users increases, the average FSHR of all algo-
rithms gradually decreases, which is because more bandwidth
requirements exacerbate the bandwidth bottleneck. As shown
in Fig. 6(b), in the Ring topology, the average FSHR of PFS-
DF algorithm is still significantly higher than other algorithms.
When the number of users is 500, the average FSHR of
the PFS-DF, Mobi-Flow, MoRule, and Reactive algorithms
are 74.72%, 57.16%, 53.45%, and 40.74% respectively. The
results show that the four algorithms have lower average FSHR
in the Ring topology compared to the Star topology. This is
because, in Ring topology, the small cell and the macro cell
are connected into a ring, and the flow may traverse small
cells on the ring before reaching its destination, which leads
to more bandwidth consumption and aggregates the shortage
of network resources.
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Fig. 7. Bandwidth utilization and TCAM utilization under two routing
strategies.

As shown in Fig. 6(c), in the Star topology, PFS-DY algo-
rithm is superior to other algorithms in average FSHR. When
the number of users is 500, the average FSHR of the PFS-
DY, Mobi-Flow, MoRule, and Reactive algorithms are 73.14%,
56.98%, 50.80%, and 40.73% respectively. This means that
our algorithm can improve average FSHR by 28.36%, 43.98%,
and 79.57% compared to the Mobi-Flow, MoRule, and Reac-
tive algorithms. Compared with the default routing, dynamic
routing has a higher average FSHR. This is because dynamic
routing provides more routing opportunities and alleviates the
shortage of network resources. As shown in Fig. 6(d), in the
Ring topology, PFS-DY algorithm is also superior to other
algorithms in average FSHR. When the number of users is
500, PFS-DY algorithm improves the FSHR performance by
30.99%, 40.05%, and 83.48% compared with the Mobi-Flow,
MoRule, and Reactive algorithms, respectively.

3) Bandwith and TCAM Utilization: Fig. 7 shows the band-
width and TCAM utilization of our algorithms in Star topol-
ogy with limited available bandwidth and TCAM resources.
As shown in Fig. 7(a), the bandwidth utilization of PFS-
DF algorithm is higher than other algorithms. In Reactive
algorithm, no flow rules are proactively set, so no bandwidth
resources are reserved. Only when the user switches to a new
small cell, the Reactive algorithm reactively sets up flow rules
for its flow to allocate bandwidth. With the increase in the
number of users, the bandwidth utilization of these algorithms
does not increase significantly, because the bandwidth they
require has been exhausted. As shown in Fig. 7(a), TCAM
utilization of PFS-DF algorithm is higher than that of other
algorithms. This means that under the same given TCAM
and bandwidth resources, our algorithm can utilize TCAM
and bandwidth resources more efficiently to set flow rules for
more flows. This is because, a flow can be set with flow rules
only when its TCAM and bandwidth resources on all nodes
and links on its routing path are satisfied. Our algorithm is
designed to jointly consider and efficiently utilize both limited
TCAM and bandwidth resources. However, MoRule ignores
the limitation of bandwidth resources, so that TCAM and

bandwidth resources cannot be efficiently utilized, where flows
may not be set with flow rules because bandwidth resources
are exhausted, although TCAM resources are idle. Besides,
MobiFlow only sets flow rules for each user’s flow in the small
cell with the greatest transition probability, failing to efficiently
utilize the available resources. Besides, as the number of users
increases, the increase in TCAM utilization slows down due
to limited TCAM and bandwidth resources.

As shown in Fig. 7(b), both PFS-DY and MoRule have
high bandwidth utilization, because they can make full use
of network resources. Besides, the bandwidth utilization of
MoRule is slightly higher than that of PFS-DY. This is because
PFS-DY gives priority to setting flow rules for flows with small
bandwidth requirements, which may result in a small amount
of available bandwidth not being used by flows with large
bandwidth. It should be noted that PFS-DY is more resource
efficient and can achieve higher FSHR, as mentioned above.
Moreover, in these two algorithms, when the number of users
is 200, the bottleneck bandwidth resource is exhausted, and
the bandwidth utilization does not increase with the increase
of the number of users. Besides, when the number of users is
500, PSF-DY consumes less bandwidth than when the number
of users is 400. This is because PSF-DY has the potential to
set flow rules for flows with shorter paths, which consumes
less non-bottleneck bandwidth. Finally, PFS-DY, MobiFlow
and MoRule algorithms consume more bandwidth resources in
dynamic routing compared to default routing. This is because
the shortest path is usually used as the default routing path;
while the dynamic routing path may be longer when the
available bandwidth on the shortest path is insufficient, which
results in more bandwidth resource consumption. As shown in
Fig. 7(b), the TCAM utilization of PSR-DY algorithm is still
better than other algorithms for dynamic routing. It should be
noted that although more flow rules need to be set, it will not
degrade service performance. This is because our algorithm is
used to set up flow rules in a proactive manner rather than a
reactive. This operation is completed before the user accesses
the new small cell, and the user traffic can be forwarded
directly without delay.14 The above results verify that our
algorithm can utilize TCAM and bandwidth resources more
efficiently to improve network performance, which is hard to
achieve.

4) Execution Time: To further illustrate the practicality of
our algorithms, we evaluate their execution time and discuss
their practicality in real-world settings. As shown in Fig. 9(a),
the execution time of our algorithm is longer than that of
MoRule and MobiFlow. For example, when the number of
users is 500, our algorithm needs 0.76s, while MobiFlow and
MoRule need 0.18s and 0.16s. This is because more factors are
considered in our algorithm to obtain a higher FSHR, which is
worthwhile. Since, our algorithm is responsible for proactively
setting up flow rules, a high FSHR is critical for it. By contrast,
setting up flow rules in a reactive manner delays user traffic,
and a short execution time is critical. Similar results can be

14The flow setup latency is 91-164 ms [28], and the user switches to a new
small cell every 11-50 s [11]. Therefore, it is reasonable to believe that the
proactive flow setup process is completed before the user switches to a new
small cell.
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Fig. 8. Execution time under two routing strategies.

Fig. 9. End-to-end latency under two routing strategies.

found in Fig. 9(b). When the number of users is 500, our
algorithm takes 0.96s, while MoRule and MobiFlow take 0.14s
and 0.40s.

Note that the execution time of our algorithms is always
within 1 s, which is practically applicable for mission-critical
applications15 and typical mobile users (switching to a new
small cell every 11-50 s [11]). Moreover, in SDMENs, SDN
controllers are deployed in a distributed manner to manage
the entire network, with each controller only responsible for
a small area. Furthermore, our algorithm is responsible for
network slices that contain mission-critical applications where
users are small in number, especially in small areas. Finally,
the computing power of the server in the edge data center is
more powerful, and the algorithm can also be accelerated by
multi-core parallel computing, hardware acceleration, distrib-
uted computing, etc.

C. Experimental Result

1) End-to-End Latency: To evaluate the impact of the
FSHR on the end-to-end latency, we test our algorithm in our
mininet-WiFi/RYU-based testbed. It should be noted that in
the experiment, the default node TCAM and link bandwidth
are still adopted. In this experiment, we tested the algorithms
we designed under default routing and dynamic routing. In the
default routing case, the average FSHR of the PFS-DF, Mobi-
Flow, MoRule, and Reactive algorithms are 73.2%, 57.2%,
51.0%, and 40.6%, which corresponds to the simulation result
with 500 users as shown in Fig. 6(a). For the dynamic routing
case, the average FSHR of these four algorithms are 73.2%,
57%, 50.8%, and 40.8%, which corresponds to the result

15Because our algorithms are designed to proactively set flow rules, not
reactively. Our algorithms attempt to set flow rules for flows before they arrive,
which allows these flows to be forwarded directly without waiting for the flow
setup process (including algorithm execution). Once a flow arrives and there
is no corresponding flow rule, then the controller is reactively triggered to
set flow rules for it with a low complexity reactive flow setup algorithm (not
ours), which is done in about 10-100ms [27], [28].

with 500 users in Fig. 6(c). With reference to [13], we use
ping16 to generate 500 flows instantaneously to test the end-
to-end latency, where the source and destination of the flow
are randomly generated. The tested topology is Star, and the
experimental results are shown in Fig. 9.

As shown in Fig. 9(a), in the default routing case, 73.2%
of flows in our algorithm have a latency of less than 1 ms,
while 42.8%, 49.0%, and 59.4% of the flows in Mobi-Flow,
MoRule, Reactive algorithms have a latency of more than
10.49, 10.86 and 10.77 ms. This is because our algorithm has
a higher FSHR compared with other algorithms, and more
flows are proactively set up with flow rules. When a user
accesses a new small cell, its service flow can be directly
forwarded without introducing additional flow setup latency,
which greatly reduces the end-to-end latency. The experimen-
tal results further verify the superiority of our algorithm.

Similar results can be found in the dynamic routing case,
as shown in Fig. 9(b). In our algorithm, 73.2% of the flows
have a latency of less than 1 ms, while in Mobi-Flow, MoRule,
and Reactive algorithms, 43.0%, 49.2%, and 59.2% of the
flows have a latency exceeding 20.08, 23.04, and 21.74 ms.
The experimental results show that the algorithms have a
longer end-to-end latency under the dynamic routing strategy.
This is because, under the dynamic routing strategy, the SDN
controller needs to set flow rules for all network elements
on the routing path of each flow. In this case, more network
elements need to be set flow rules, resulting in a longer
flow setup latency, thereby prolonging the end-to-end latency.
The above experimental results verify that our algorithm can
provide better performance for latency-sensitive services.

VIII. CONCLUSION

In SDMENs, user mobility introduces additional flow setup
latency, which undermines the latency-sensitive applications.
In this paper, we are the first to study how to proactively
set up flow rules to maximize FSHR under limited band-
width and TCAM resources, thereby eliminating flow setup
latency as much as possible to improve the performance of
latency-sensitive services. Considering the two typical routing
strategies, we formally construct this problem as proactive
flow setup problems with default routing and dynamic routing,
aiming to maximize the total FSHR. These two problems are
rigorously proved to be NP-hard, and FPTAS is ruled out.
To tackle these two problems, we propose a polynomial-time
approximation algorithm for the default routing case and an
efficient heuristic algorithm for the dynamic routing case. They
determine which small cells to proactively set up flow rules
and their routes for each user’s service flow. Finally, extensive
trace-driven experimental and simulation results verify that our
algorithm is close to the optimal solution and can significantly
increase the FSHR and improve latency-sensitive services.

We saw that the proposed scheme is applicable to typi-
cal client-server communication applications. In the future,

16The ultra-low latency required by mission-critical applications refers to
end-to-end latency, and ping is a typical command to test end-to-end latency,
so this is reasonable. Besides, since each flow is allocated the required
bandwidth, it is independent of the background traffic, which is critical to
ensure the ultra-low latency of the service.
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Fig. 10. A special case of PFSDF problem for NP-hard proof.

we plan to extend our research to client-to-client commu-
nication applications, where the source and destination have
mobility, such as vehicle-to-vehicle communication.

APPENDIX A
PROOF OF THEOREM 1

Proof: The multiple knapsack problem can be described
as follows: Given a set of n items and a set of m knapsacks,
each item j has a weight wj and a price τ j , and each knapsack
k has a capacity ck. We need to determine which items to
include in each knapsack so that the total value is as large as
possible and does not exceed the capacity of each knapsack.
Let the binary variable yj,k indicate whether to include item
n in knapsack m. Then, the multiple knapsack problem can
be formalized as

max
n∑

j=1

m∑
k=1

τ jyj,k

s.t.

n∑
j=1

wjyj,k ≤ ck, k ∈ {1, 2, . . . , m},
m∑

k=1

yj,k ≤ 1, j ∈ {1, 2, . . . , n},

yj,k ∈ {0, 1}, ∀j ∈ {1, 2, . . . , n}, k ∈ {1, 2, . . . , m}.
(14)

We considered a topology as shown in Fig. 10. There are n ·
m users in the network, and they currently access small cell A
(omitted in the figure for simplicity). The transition probability
of each user i (i ∈ {i1, i2, . . . , imn}) to small cell s (s ∈
{s1, s2, . . . , snm}) and A are P i,s and 1−P i,s, respectively.
The service flow of user i is f i = {D, bi}. The default routing
path of small cell sh (h ∈ {1, 2, . . . , nm}) to the edge server
D is sh ⇀ a(h−1)//m+1 ⇀ e(h−1)%m+1 ⇀ D. The available
bandwidth on link (el, D) is Cel,D, and the available TCAM
on small cell s (s ∈ {a1, a2, . . . , an}) is 1. The available
bandwidth and TCAM resources on other nodes and links are
∞. Let τ j = P ih//m,sh//m , wj = b(j−1)·m+k, Cel,D = ck, j ∈
{1, 2, . . . , n}, k ∈ {1, 2, . . . , m}, l ∈ {1, 2, . . . , m}, h ∈
{1, 2, . . . , nm}. We define zj,k = xi(j−1)·m+k ,s(j−1)·m+k .

Then, PFSDF problem can be simplified to

max
n∑

j=1

m∑
k=1

τ jzj,k+
∑

i∈{i1,i2,...,inm}

∑
s∈{s1,s2,...,snm}

(1− P i,s)

n∑
j=1

wjzj,k ≤ ck, ∀k ∈ {1, 2, . . . , m},

m∑
k=1

zj,k ≤ 1, ∀j ∈ {1, 2, . . . , n},

zj,k ∈ {0, 1}, ∀j ∈ {1, 2, . . . , n}, k ∈ {1, 2, . . . , m},
(15)

where
∑

i∈{i1,i2,...,inm}
∑

s∈{s1,s2,...,snm}(1−P i,s) is a con-
stant. Obviously, this problem (Eq. (15)) is equivalent to the
multiple knapsack problem (Eq. (14)). Thus, PFSDF problem
is NP-hard.

Since the multiple knapsack problem is an instance of
PFSDF problem, and the multiple knapsack problem is proved
to be strongly NP-hard [25], then PFSDF is also strongly
NP-hard. Since

∑
s∈Si∪ςi P i,s = 1, based on (2), we have

R∗
PFSDR ≤ |U|, where R∗

PFSDR denotes the optimal solution
for PFSDF problem. Since PFSDF problem is both strongly
NP-hard and its objective function has a polynomial boundary,
it cannot have FPTAS unless P=NP [46]. �
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