
IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 1, JANUARY 2024 235

SafeDRL: Dynamic Microservice Provisioning With
Reliability and Latency Guarantees in Edge

Environments
Yue Zeng , Zhihao Qu , Member, IEEE, Song Guo , Fellow, IEEE, Baoliu Ye , Member, IEEE,

Jie Zhang , Member, IEEE, Jing Li , Member, IEEE, and Bin Tang Member, IEEE

Abstract—As a key technology of 5G, network function vir-
tualization enables each monolithic service to be divided into
microservices, facilitating their deployment and management in
edge environments. One of the most critical issues in 5G is how
to support dynamically arriving mission-critical services with
low-latency and high-reliability requirements in distributed edge
environments. However, most existing works focus on how to
provide reliable services without considering latency, and their
heuristics struggle to cope with high-dimensional constraints and
complex environments with heterogeneous infrastructure and
services. In this paper, we propose a SafeDRL algorithm to
resource-efficiently support these dynamically arriving services
while meeting their reliability and latency requirements. Specif-
ically, we first formulate the problem as an integer nonlinear
programming and prove its NP-hardness. To tackle this problem,
our SafeDRL algorithm captures delayed rewards in dynamic
environments by reinforcement learning, and corrects constraint
violations with high-quality feasible solutions based on expert
intervention, and prunes unnecessary backup instances for opti-
mality. The algorithm is proved to have a bounded approximation

Manuscript received 1 February 2023; revised 27 June 2023; accepted
16 October 2023. Date of publication 2 November 2023; date of current ver-
sion 22 December 2023. This work was supported in part by the Fundamental
Research Funds for the Central Universities under Grant No. B210201053,
in part by the National Natural Science Foundation of China (Grant Nos.
61832005, 62172204, and 62102131), in part by the Natural Science Founda-
tion of Jiangsu Province, China (Grant Nos. BE2020001-3 and BK20210361),
in part by the Collaborative Innovation Center of Novel Software Technology
and Industrialization, in part by the Key-Area Research and Development
Program of Guangdong Province (No. 2021B0101400003), in part by the
Hong Kong RGC Research Impact Fund (No. R5060-19, No. R5034-18),
in part by the Areas of Excellence Scheme (AoE/E-601/22-R), in part by
the General Research Fund (No. 152203/20E, 152244/21E, 152169/22E,
152228/23E), and in part by the Shenzhen Science and Technology Innovation
Commission (JCYJ20200109142008673). Recommended for acceptance by
E. Smirni. (Corresponding authors: Zhihao Qu; Song Guo; Baoliu Ye.)

Yue Zeng and Baoliu Ye are with the State Key Laboratory for Novel
Software Technology, Department of Computer Science and Technology, Nan-
jing University, Nanjing 210023, China (e-mail: zengyue@smail.nju.edu.cn;
yebl@nju.edu.cn).

Song Guo is with The Hong Kong University of Science and Technology,
Hong Kong, China (e-mail: songguo@cse.ust.hk).

Jie Zhang and Jing Li are with The Hong Kong Polytechnic
University, Hong Kong, China (e-mail: 18104473r@connect.polyu.hk;
jing5.li@polyu.edu.hk).

Zhihao Qu and Bin Tang are with the Key Laboratory of Water Big Data
Technology of Ministry of Water Resources, and with the College of Computer
Science and Software Engineering, Hohai University, Nanjing 211100, China
(e-mail: quzhihao@hhu.edu.cn; cstb@hhu.edu.cn).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TC.2023.3329194, provided by the authors.

Digital Object Identifier 10.1109/TC.2023.3329194

ratio in general cases. Extensive trace-driven simulations show
that, compared with the state-of-the-art solution, SafeDRL can
save resource costs by up to 49.32% and improve the service
acceptance ratio by up to 55% with acceptable execution time.

Index Terms—5G, deep reinforcement learning, network
function virtualization, edge computing, mission-critical services.

I. INTRODUCTION

AS a key enabling technology for 5G, network function
virtualization (NFV) virtualizes hardware-based service

functions (SFs) into software, enabling SFs to be flexibly and
elastically deployed to commodity servers [1], [2], [3], [4].
Driven by virtualization technology, the microservice architec-
ture (MSA) separates each monolithic service into multiple in-
dependent microservices (called SFs next).1 Benefiting from the
loosely coupled architecture, services can achieve independent
deployment, fast iteration, and flexible management.

Recently, many mission-critical applications have urged
service providers to support low-latency and high-reliability
services. According to 3GPP reports [5], AR/VR requires
0.9999 reliability and 10 ms latency, while medical monitoring
demands 0.999999 reliability and 100 ms latency. However,
the service deployed on 5G edge sites (ESs) may experience
low reliability and high latency due to the following reasons.
First, each service consists of multiple SFs; the entire service
fails once an SF fails [6]. Second, the ES devices are low-end,
poorly maintained, and run in poor operating environments [7].
Finally, the component SFs of each service need to be deployed
to highly distributed ESs, which may experience high
propagation latency.

Backup is an effective way to improve service reliability.
Once an SF fails, the traffic is redirected to its backup. Then,
the failure is masked, and the service is maintained. However,
more backups will result in higher resource costs. Therefore,
many existing works have studied how to back up and deploy
services to meet their reliability requirements while minimizing
resource costs [6], [8], [9]. In these studies, reliability is de-
fined as the probability that a packet is successfully transmitted

1Microservice is a virtualized service function, which is also called VNF.
In this paper, we refer to them as service functions.

0018-9340 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Nanjing University. Downloaded on January 13,2024 at 16:15:07 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-5553-5534
https://orcid.org/0000-0001-7538-1985
https://orcid.org/0000-0001-9831-2202
https://orcid.org/0000-0003-1065-449X
https://orcid.org/0000-0002-8073-2118
https://orcid.org/0000-0002-7027-5574
https://orcid.org/0000-0002-4577-8882
mailto:zengyue@smail.nju.edu.cn
mailto:yebl@nju.edu.cn
mailto:songguo@cse.ust.hk
mailto:18104473r@connect.polyu.hk
mailto:jing5.li@polyu.edu.hk
mailto:quzhihao@hhu.edu.cn
mailto:cstb@hhu.edu.cn
https://doi.org/10.1109/TC.2023.3329194

236 IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 1, JANUARY 2024

Fig. 1. An example to illustrate the service provisioning with both reliability
and latency requirements.

from its source to its destination, where the service latency
requirement is ignored. This is reasonable for traditional ser-
vices with looser performance requirements, but not mission-
critical services with strict latency requirements. Considering
latency, reliability is defined as the probability that a packet
is successfully transmitted from its source to its destination
within a time period [10]. For example, as shown in Fig. 1,
there is a service consisting of three SFs, which requires 0.99
reliability and 10 ms latency. After they are deployed, traffic is
forwarded on path S →A→B → C, where A, B, and C are
selected as primary instances for forwarding traffic. To improve
service reliability to meet its reliability needs, we provide SF
B with a backup B′. In this way, once SF B fails, traffic is
redirected to SF B′ and traverses S →A→B′ → C with a
latency of 21 ms. This path is considered reliable when the
latency is ignored but unreliable when the latency is considered.
Therefore, ignoring latency in traditional work may lead to
service performance violations, resulting in frequent service
request rejections.

However, it is challenging to cost-effectively support dynam-
ically arriving services to meet their reliability and latency re-
quirements on limited and heterogeneous infrastructures. First,
service requests arrive dynamically, and current decisions may
affect future decisions due to limited resources, while future
services are unknown. Second, high-dimensional resource con-
straints hinder finding feasible solutions in the solution space
to satisfy the capacity, reliability, and latency constraints simul-
taneously. Third, heterogeneous service requests and limited
and heterogeneous infrastructure resources make it difficult to
extract empirical rules to guide optimal or near-optimal de-
cisions. For example, each ES has limited resources and has
different resource charges and hardware reliability. Each service
may be composed of different SFs with different reliability and
latency requirements, and each SF is heterogeneous in resource
consumption and software reliability.

Deep reinforcement learning (DRL) is designed to capture
delayed rewards in dynamic environments, while leveraging
deep neural networks to extract hidden rules behind complex
environments.2 As a result, several studies have investigated
how to leverage DRL for the resource-efficient deployment
of dynamically arriving services [12], [13], [14], [15] and
to ensure their reliability [9]. However, they fail to support

2Delayed reward. In dynamic environments, the current decision deter-
mines the immediate reward and the next state of the environment [11]. The
delayed reward is a metric to measure the benefits of the next state, which
indicates the impact of the current decision on the future, helping to achieve
higher long-term returns.

mission-critical services with latency and reliability require-
ments, while random exploration in DRL may frequently vi-
olate constraints. As an important branch of reinforcement
learning, safe reinforcement learning aims to learn policies
to maximize long-term rewards while respecting constraints.
Then, several works [16], [17], [18] have designed safety re-
inforcement learning algorithms based on human intervention
to correct actions that violate constraints. However, frequent
human intervention may involve high labor costs and subop-
timal solutions.

In this paper, we design a SafeDRL algorithm to resource-
efficiently support dynamically arriving services to meet their
reliability and latency requirements in heterogeneous infras-
tructures. To model all the features, we formulate the problem as
an integer nonlinear programming and prove its NP-hardness,
revealing its challenges. To capture delayed rewards in dynamic
environments, we exploit a typical DRL, called DDPG [19],
which can effectively handle our problem with continuous state
and large-scale discrete action and adapt it to our problem
with varying state and behavior sizes in a redundant way. To
handle the high-dimensional constraints, we design an expert
intervention algorithm based on our insights to correct actions
that violate the constraints. Moreover, for optimality, we design
a pruning algorithm to prune unnecessary instances in the action
that do not violate constraints, which can effectively avoid ex-
ploring those low-quality feasible solutions. Finally, we verify
the optimality, superiority, and practicality of our algorithm via
extensive trace-driven experimental results.

The main contributions of this paper are summarized
as follows.

• To our knowledge, we are the first to study how to support
dynamically arriving services with high reliability and low
latency requirements. To model all features, we formulate
this problem as integer nonlinear programming and prove
its NP-hardness.

• We design a SafeDRL algorithm to make backup, deploy-
ment, and primary instance selection decisions to meet
dynamic service requests while respecting constraints. The
core idea is integrating expert interventions to correct the
action that violates the constraints. Moreover, we propose
a pruning algorithm that prunes unnecessary backup in-
stances for optimality. The algorithm is proved to have a
bounded approximation ratio in general cases.

• Extensive simulation results driven by Alibaba trace show
that, compared with the state-of-the-art solution, SafeDRL
can save resource costs by up to 49.32% and improve the
service acceptance ratio by up to 55%.

The rest of the paper is organized as follows. Section II briefly
introduces the related work. Section III formulates the prob-
lem we studied and proves its NP-hardness. SafeDRL is pro-
posed and analyzed in Section IV and evaluated in Section V.
Section VI concludes the paper.

II. RELATED WORK

We summarize related work into three categories and discuss
their drawbacks and differences compared to our work.

Authorized licensed use limited to: Nanjing University. Downloaded on January 13,2024 at 16:15:07 UTC from IEEE Xplore. Restrictions apply.

ZENG et al.: SAFEDRL: DYNAMIC MICROSERVICE PROVISIONING WITH RELIABILITY AND LATENCY GUARANTEES IN EDGE ENVIRONMENTS 237

A. Heuristics for Service Provision

There is a series of works [6], [8], [20], [21], [22], [23]
that have investigated how to support service provisioning cost-
effectively, and efficient heuristics have been devised based
on expert insights. As pioneers, Cohen et al. [20] investigated
how to deploy SFs for resource-efficient service provisioning.
Considering the latency requirement, Jin et al. [21] further
investigated how to deploy SFs to meet service latency require-
ments while minimizing resource cost. Moreover, considering
reliability requirements, Martin et al. [22] studied how to deploy
SFs resource-efficiently to meet service latency and reliability
requirements. However, how to provide backup for SFs is be-
yond their concern, which fails to support services with high-
reliability requirements. To facilitate these services, several
works [6], [8], [23] have studied how to back up and deploy SFs
to meet their service reliability requirements while minimizing
resource costs. However, they fail to meet services with low
latency needs. Moreover, the heuristic solutions they designed
make one-shot decisions and fail to capture delayed rewards in
dynamic environments, leading to suboptimal solutions.

B. DRL-Based Solution for Service Provision

DRL is designed to capture delayed rewards in dynamic en-
vironments, and it can utilize neural networks to extract hidden
rules from complex environments. Then, several studies [12],
[13], [14], [15] have investigated how to leverage DRL for
service provisioning. Considering service reliability, Jia et al.
[9] further studied how to deploy and backup services resource-
efficiently to meet their reliability requirements. However,
service latency requirements are beyond their consideration.
Moreover, the above DRL-based schemes only add a penalty
item in the reward to punish the behavior violating the con-
straint, which can hardly prevent DRL’s random exploration
from violating the constraint, especially for our problem with
high-dimensional constraints.

C. Safe Reinforcement Learning

Safe reinforcement learning, an important branch of re-
inforcement learning aiming at maximizing expected returns
while respecting security constraints, is critical for real-world
applications. Many research works [16], [17], [18], [24], [25]
have designed various security reinforcement learning algo-
rithms for different application scenarios. As pioneers, Altman
et al. [24] designed safe reinforcement learning based on linear
programming, which is applicable to tabular settings where
state-action pairs are enumerable. However, this fails to deal
with large-scale or even continuous actions and states. More-
over, Lagrangian multiplier methods [25] are used to penalize
actions that violate constraints, depending on the degree of
constraint violation. This applies when appropriate constraint
violations are allowed, but not for mission-critical applications
with demanding performance requirements. Finally, several
works [16], [17], [18] have designed human-intervention-based
safe reinforcement learning algorithms that aim to use human
knowledge-based interventions to correct actions that violate

Fig. 2. An example to illustrate the NFV-enabled edge computing system.

constraints. However, frequent human intervention may involve
high labor costs and suboptimal solutions.

The above works design rule-based or DRL-based solutions
for highly reliable or low-latency service provisioning. How-
ever, none of them considered how to provide low-latency
and high-reliability services in dynamic edge environments,
where existing work frequently violates service requirements
and suffers from resource inefficiency. Inspired by the safety
reinforcement learning algorithm based on human intervention,
we design an expert intervention-assisted DRL algorithm to
capture delayed rewards while holding constraints.

III. SYSTEM MODEL AND PROBLEM FORMULATION

This section outlines the system model, formulates the reli-
able service provision problem, and analyzes its complexity.

A. Primer

1) System Model: As shown in Fig. 2, our system consists
of three components [26] called services, infrastructure, and
service management and orchestrator (SMO), which can be
modeled as

Service. Each service consists of multiple SFs, which can
be implemented on commodity servers via virtual machines or
containers. In the NFV-enabled edge computing system (NFV-
ECS), service requests arrive one by one. Let i denote the i-th
service request, and I denote the set of service requests. Each
service i has reliability requirement Ri and latency requirement
L
i. Besides, each service consists of a set of SFs Mi, where

j-th SF is denoted as mi,j . Each SF Mi,j has software reliabil-
ity ri,j , requires computing resources ci,j , and forwards traffic
of size bi,j to its next SF.

Infrastructure. In NFV-ECS, there is a set E of ESs. For
each ES e ∈ E , its computing resource capacity and hardware
reliability are denoted by Ce and re, respectively. Let τe denote
the cost per unit computing resource on ES e [27]. These ESs
are connected by a set of overlay links L, each link (e, e′) ∈ L
having bandwidth capacity Be,e′ and propagation latency le,e′ .
Let κe,e′ denote the cost per unit bandwidth resource on link
(e, e′) [28]. Besides, the latency from the source of service i to
each ES e is denoted as lie.

SMO. Service management and orchestrator is owned by
the service provider and is responsible for managing and mon-
itoring the virtualized physical resources on the underlying
infrastructure. When a service request arrives, the SMO needs

Authorized licensed use limited to: Nanjing University. Downloaded on January 13,2024 at 16:15:07 UTC from IEEE Xplore. Restrictions apply.

238 IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 1, JANUARY 2024

TABLE I
SUMMARY OF NOTATIONS

Symbols Descriptions

E, I,L Set of ESs, services, overlay links
Mi Set of SFs in service i ∈ I
R
i Reliability required by service i ∈ I

L
i Latency requirements by service i ∈ I

Υi,j Set of ESs with instances deployed for SF mi,j

Pi Set of routing paths for service i

Pi
Set of paths in Pi that violate the latency requirement

Ce Computing capacity of ES e ∈ E
Be,e′ Bandwidth capacity of link (e, e′) ∈ L
pi,k k-th routing path in Pi

ρi Primary routing path for service i
p̃i,k,j j-th ES on path pi,k

ρ̃i,j j-th ES on path ρi

τe Cost of unit computing resources on ES e ∈ E
κe,e′ Cost of unit bandwidth resources on link (e, e′) ∈ L
re Hardware reliability of ES e ∈ E

mi,j j-th SF in service i ∈ I
ri,j Software reliability of SF mi,j

ci,j Computing resources required by SF mi,j

bi,j Bandwidth resource required by the traffic from SF mi,j

le,e′ Propagation latency on link (e, e′) ∈ L
lie Propagation latency from the source of service i to ES e ∈ E

Decisions Descriptions
xi,j
e Binary variable indicating whether to deploy the instance of

SF mi,j to ES e

yi,je Binary variable indicating whether to set the instance deployed
on ES e for SF mi,j as the primary instance

zi,j
e,e′ Binary variable indicating whether the outgoing traffic from

SF mi,j traverses link (e, e′)

to implement the service into the underlying infrastructure and
monitor it continuously. The SMO is implemented by fault-
tolerant software-defined network (SDN) controllers [29] and
is considered reliable.

The above system architecture is designed based on the
NFV architecture specified by ETSI [26], and it can be well
integrated into the 5G system (5GS) to serve mission-critical
applications and network services. In 5GS [30], [31], SMO
is owned by network service producers, and accepts requests
from network function service consumers, and implements net-
work services into the underlying infrastructure in the form
of microservices according to their latency and reliability
requirements.

2) Highly-Reliable and Low-Latency Service Provisioning:
In our dynamic NFV-ECS, the service requests arrive one by
one and need to be deployed to the underlying infrastructure
immediately. To meet the service reliability, we may need
to provide backups for its component SFs. Besides, we also
need to select the primary instances to forward the traffic of
the service. Therefore, we need to make the following three
decisions: i) how many instances are needed for each SF,
with one as the primary instance and the other as the backup,
ii) which ESs to deploy these SF instances to, iii) which instance
is selected as the primary instance to forward traffic. For ease of
understanding, we give an example as shown in Fig. 2. There
is a service consisting of three SFs A, B, and C. We deploy
instances of these three SFs to the underlying infrastructure,
where the primary instances are selected to forward traffic.

Moreover, we also deploy a backup instance for SF B to im-
prove its reliability. Once the primary instance of SF B fails,
its traffic will be redirected to its backup instance to mask the
failure and maintain service.

B. Problem Analysis

Our research investigates how to support dynamically ar-
riving services under limited resource capacity to meet their
reliability and latency requirements while minimizing resource
cost. Next, we analyze and formalize the cost model, along with
service completeness, primary instance, capacity, latency, and
reliability constraints.

1) Cost Model: Implementing SFs in infrastructure will
introduce financial costs, including computational costs and
bandwidth costs. Specifically, deploying primary and backup
instances for the component SFs of service i incurs compu-
tational resource costs, while forwarding its traffic between
primary SF instances incurs bandwidth resource costs.3 Hence,
the resource cost of service i can be formalized as

Ci =
∑

j∈Mi

∑

e∈E
τec

i,jxi,j
e ,+

∑

j∈Mi

∑

e,e′∈L
bi,jκe,e′z

i,j
e,e′ , ∀i ∈ I,

(1)

where xi,j
e is a binary variable indicating whether to deploy the

instance of SF mi,j to ES e. And, zi,je,e′ is a binary variable
indicating whether the traffic of service i traverses link (e, e′).
It should be noted that, similar to [8], the off-site backup (rather
than on-site backup) strategy is adopted in our research. This
backup strategy provides backup instances on geographically
separated ESs for the primary VNF instance, which can provide
higher reliability and is suitable for applications with high-
reliability requirements.

2) Service Completeness Constraints: For each service, at
least one instance of its component SF needs to be deployed to
ensure its normal operation. This can be formulated as

∑

e∈E
xi,j
e ≥ 1, ∀i ∈ I, j ∈Mi. (2)

3) Primary Instance Constraints: Each SF in each service
needs to deploy a primary instance for forwarding its traffic
(Eq. (3)), and other instances serve as backup instances. The
instance on ES e can be served as the primary instance of SF
mi,j only if the instance of the SF is deployed on the ES (Eq.
(4)). The traffic from SF mi,j traverses link (e, e′) only if its
primary instance is located at ES e and the primary instance of
its successor SF mi,j+1 is located at ES e′ (Eq. (5)). The above
conditions can be formalized as

∑

e∈E
yi,je = 1, ∀i ∈ I, j ∈Mi, (3)

3It should be noted that the bandwidth on non-primary routing paths is
allocated only when failures occur; otherwise it will result in overwhelming
bandwidth resource cost for exponential routing paths. Although these paths
may not be allocated enough bandwidth due to insufficient link bandwidth,
this is negligible, since the network is highly redundant and designed for
traffic peaks, its average link utilization is only 30-40% [32]. Besides, these
costs are negligible due to infrequent failures. For example, a reliability of
0.99 means that its downtime only accounts for 1% of the total running time.

Authorized licensed use limited to: Nanjing University. Downloaded on January 13,2024 at 16:15:07 UTC from IEEE Xplore. Restrictions apply.

ZENG et al.: SAFEDRL: DYNAMIC MICROSERVICE PROVISIONING WITH RELIABILITY AND LATENCY GUARANTEES IN EDGE ENVIRONMENTS 239

Fig. 3. An example to illustrate the potential paths of the routing traffic of
a service.

xi,j
e ≥ yi,je , ∀i ∈ I, j ∈Mi, e ∈ E , (4)

zi,je,e′ = yi,je yi,j+1
e′ , ∀i ∈ I, j ∈Mi, (e, e′) ∈ L, (5)

where yi,je is a binary variable indicating whether to set
the instance deployed on ES e for SF mi,j as the pri-
mary instance. Obviously, once yi,je is determined, zi,je,e′

is determined.
4) Capacity Constraints: The computational load on each

ES and the communication load on each link should not exceed
their capacity, which can be expressed as

∑

i∈I

∑

j∈Mi

ci,jxi,j
e ≤ Ce, ∀e ∈ E . (6)

∑

i∈I

∑

j∈Mi

bi,jzi,je,e′ ≤ Be,e′ , ∀(e, e′) ∈ L. (7)

5) Latency Constraints: End-to-end latency (E2E) is de-
fined as the time required for a packet to be transmitted from its
source to its destination [33]. We give an example to illustrate
the latency constraint, as follows. As shown in Fig. 3, there is
a client at s that requests a service, which consists of three SFs
A, B, and C. Each of them is deployed with two instances, one
as the primary instance and one as the backup. In this case,
the client’s traffic may traverse any path consisting of these
instances when a failure occurs or does not occur. To satisfy
the latency constraint, we need to prune the paths that violate
the latency requirement. Therefore, based on the above analysis,
we model the latency constraint as follows.

Each SF may be deployed with multiple instances, one as the
primary instance and the others as backups, as shown in Fig. 3.
Then, the set of ESs with instances deployed for SF mi,j can
be denoted as

Υi,j = {e ∈ E|xi,j
e = 1}, ∀i ∈ I, j ∈Mi. (8)

For each service i, its traffic can be routed along any path
consisting of its deployed SF instances. These routing paths can
be denoted as

Pi = {(si,1, ..., si,j , ..., si,|Mi|), ∀si,j ∈Υi,j}, ∀i ∈ I, (9)

where si,j denotes any ES in Υi,j .
E2E latency includes transmission, queuing, processing, and

propagation latency. First, the queuing latency should be neg-
ligible, which can be guaranteed by allocating adequate re-
sources, which is critical for mission-critical applications with

demanding delay requirements.4 Besides, the transmission la-
tency is also negligible because the packets are particularly
small in size. Moreover, the processing latency is also negli-
gible. This is because an SF processes a packet in 0.01-0.1 ms
[34], whereas typical services require latency of 5-100 ms [5].
Finally, propagation latency is non-negligible because ESs are
highly distributed. Propagation latency includes all link latency
on the path and the latency from the source to the first ES on
the path. Then, the E2E latency on any routing path pi,k ∈ Pi

can be expressed as

Li,k =
∑

(e,e′)∈pi,k

le,e′ + lγi,δi,k , ∀pi,k ∈ Pi. (10)

where γi denotes the source of service i and δi,k denotes the
first ES on path pi,k.

Then, the set of routing paths that violate the latency require-
ment can be expressed as

Pi
= {pi,k, ∀pi,k ∈ Pi, Li,k > L

i}. (11)

6) Reliability: Reliability is defined as the probability that
a data packet is successfully transferred within a time period
[10]. For example, VR requires 99.99% reliability and 10 ms
E2E latency. This means that its packets need to be successfully
transmitted within 10 ms with no less than 99.99% probability.
Obviously, latency and reliability are coupled. Besides, relia-
bility refers to a probability term that is distributed from 0 to
1, i.e., Ri ∈ [0, 1].

Next, we first model the service reliability without consid-
ering the latency, and then further model the service reliability
with considering the latency to eliminate the reliability brought
by the path that violates the constraint.

Reliability without latency. For each service i ∈ I, once a
component SF mi,j fails, the entire service fails [6]. Besides,
similar to [6], [8], the virtual link connecting SFs is considered
reliable.5 Then, the service reliability can be defined as

Ri =
∏

j∈Mi

Ri,j , ∀i ∈ I, (12)

where Ri denotes service reliability regardless of latency, and
Ri,j denotes the reliability of SF mi,j .

For each SF, it fails only when its instance fails on all ESs
[37]. Then, the reliability of SF mi,j can be characterized as

Ri,j = 1−
∏

e∈E
(1−Ri,j

e), ∀i ∈ I, j ∈Mi, (13)

where Ri,j
e indicates the reliability of SF mi,j on ES e.

4It is important to note that providing physical resources in terms of
application demand peaks ensures no queuing latency, which is critical for
mission-critical applications such as remote surgery and autonomous driving.
Queuing latency with drastic changes in load is unacceptable for these
mission-critical applications.

5The reliable virtual links can be achieved by SDN-based multi-path routing
mechanisms [35]. Although there are also backup mechanisms that can restore
failed SFs, such as 1:1 backup [36], it provides a static backup for each
container-based SF. However, it is cost-inefficient. In this work, we explore a
cost-effective service provisioning mechanism.

Authorized licensed use limited to: Nanjing University. Downloaded on January 13,2024 at 16:15:07 UTC from IEEE Xplore. Restrictions apply.

240 IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 1, JANUARY 2024

An SF fails on an ES only when the SF instance fails, or the
ES fails [37]. Therefore, the reliability of SF mi,j on ES e can
be denoted as

Ri,j
e = ri,jrex

i,j
e , ∀i ∈ I, j ∈Mi, e ∈ E , (14)

Reliability with latency. After considering the latency, the
service reliability may be degraded due to latency constraint
violation. For example, as shown in Fig. 1, a service’s traffic
can traverse A→B′ → C, which is considered reliable when
ignoring latency requirements. However, once traffic traverses
this path, its latency requirement is violated. This is considered
unreliable when considering latency requirements. Therefore,
we need to prune the reliability enhanced by those paths that
violate the latency constraint.

The service reliability is enhanced by path pi,k when the
service’s primary routing path p̃i has SF failures, and all other
backup instances fail, and path pi,k is reliable. Besides, path pi,k

is reliable only when all ES on the path and all components SFs
in the service are reliable. Then, the reliability of path pi,k can
be expressed as

R̂i,k =
∏

j∈Mi

ri,j
∏

e∈pi,k

re, ∀pi,k ∈ Pi
, i ∈ I. (15)

For path pi,k, there may be one or several backup instances
instead of the primary instance, and they work and enhance ser-
vice reliability when their primary instances on path p̃i fail and
the other backup instances fail. Then, the reliability enhanced
by path pi,k can be calculated as

R̃i,k = R̂i,k ·
∏

j∈Mi,ρi,k,j �=ρ̃i,j

(
∏

e∈Υi,j ,e/∈pi,k

(1−Ri,j
e)),

∀pi,k ∈ Pi
, i ∈ I, (16)

where ρi,k,j and ρ̃i,j denote j-th ES in paths pi,k and p̃i,
respectively.

Based on the above analysis, we need to prune the reliability
enhanced by paths that violate constraints after considering
service latency requirements. The reliability of each service i
should be no less than its reliability requirements. This can be
formulated as

�i =Ri −
∑

pi,k∈Pi

R̃i,k ≥ R
i, ∀i ∈ I,

(17)

It should be noted that once all paths violate the latency con-
straint, that is, |Pi|= |Pi|, then �i = 0.

C. Problem Formulation

In summary, the offline version of the reliable and low-
latency service provisioning (RLSP) problem in dynamic en-
vironments can be formulated as

min
xi,j
e

∑

i∈I
Ci

s.t. (1)− (17),

xi,j
e ∈ {0, 1}, yi,je ∈ {0, 1}, zi,je,e′ ∈ {0, 1}.

D. Problem Complexity

1) Hardness Result: We first analyze the hardness of finding
a feasible solution for RLSP problem. Then, we analyze the
hardness of solving RLSP problem in general and realistic
situations in which all service requests are accepted. It should be
noted that in edge computing environments, although each ES
has limited resources, massive distributed ESs provide powerful
computing capabilities. Therefore, it is generally realistic
to have sufficient infrastructure resources to accept all
service requests.

Theorem 1: It is strongly NP-hard to determine whether there
is a feasible solution for RLSP problem.

Proof: See Appendix A (see the supplementary material).
Theorem 2: Assuming all service requests are accepted,

RLSP problem is NP-hard.
Proof: See Appendix B (available online).
Since it is NP-hard to determine whether a feasible solution

exists for RLSP problem, we only need to handle RLSP prob-
lem in a best-effort manner. Moreover, the above theorems rule
out polynomial time algorithms for this problem, even when all
service requests are accepted, unless P =NP .

2) Challenges: Solving RLSP problem while satisfying its
constraints is non-trivial for the following reasons. First, service
requests arrive one by one, and current decisions may have an
impact on future decisions, resulting in delayed rewards, while
future service requests are unknown. Second, there are many in-
herent features in RLSP problem, such that making deployment,
backup and primary selection decisions with optimal or near-
optimal resource costs is complicated. These features include
heterogeneous resource capacity, resource cost and hardware
reliability of the underlying infrastructure. Each service consists
of different SFs, each of which has different software relia-
bility and resource requirements. Third, RLSP problem is ac-
companied by high-dimensional constraints, including latency,
reliability, and capacity constraints, that hinder the search for
feasible solutions. Fourth, as shown in Eq. (9), providing any
number of instances per SF may cause an exponential increase
in the number of routing paths. As a result, reliability cannot be
verified in polynomial time. For example, in NFV-ECS, there
is a service with 7 SFs and 20 ESs. If each SF is deployed with
one instance at each ES, there exist 207 = 1.28 ∗ 109 routing
paths, which is unacceptable.

IV. SAFEDRL ALGORITHM

In this section, we design a safe DRL (SafeDRL) algorithm
to address the challenges mentioned above. Specifically, we first
clarify the algorithm framework and the motivation behind it,
then elaborate on the algorithm details, and finally analyze its
theoretical properties.

A. Algorithm Framework

1) Motivation for Algorithm Framework: As discussed in
the previous section, there are three challenges to solving RLSP
problem. The first challenge is that in dynamic environments,

Authorized licensed use limited to: Nanjing University. Downloaded on January 13,2024 at 16:15:07 UTC from IEEE Xplore. Restrictions apply.

ZENG et al.: SAFEDRL: DYNAMIC MICROSERVICE PROVISIONING WITH RELIABILITY AND LATENCY GUARANTEES IN EDGE ENVIRONMENTS 241

Fig. 4. Algorithm framework.

Fig. 5. Solution space, where the red area denotes the feasible solution
space, and the green area denotes the infeasible solution space.

service requests arrive dynamically, which brings delayed re-
wards. To address this challenge, DRL is adopted to solve multi-
stage decision problems in dynamic environments, capturing
delayed rewards. As shown in Fig. 4, DRL contains two entities,
the environment and the agent. First, the agent discovers the
state from the environment, takes action based on the state, and
acts on the environment. Then, the environment determines a
reward based on the quality of the action. Finally, the agent
updates the policy based on the feedback reward, aiming to
maximize the long-term reward.

The second challenge is how to deal with optimality. In our
RLSP problem, the solution space is huge and grows exponen-
tially. For example, when |E|= 30, Mi = 5, the size of the
solution space for a service is 2150 ≈ 1.4 ∗ 1045. This means
that DRL needs to randomly explore such a huge solution space
to search for the optimal solution, which may lead to suboptimal
solutions and long training times. This is because the solution
space is filled with decisions with many redundant instances,
which are low-quality decisions. For example, in the worst
case, DRL might provide 30 instances for an SF when there
are 30 ESs which is unnecessary for reliability. Moreover, as
shown in Fig. 5, the optimal solution is a critical point. The
critical point refers to a decision in the solution space that
satisfies all constraints, where adding an instance to it will
lead to unnecessary resource cost, and reducing an instance
to it will lead to reliability violation. Therefore, for the sake
of efficiency, we design a pruning algorithm, which prunes
unnecessary instances in the feasible solution output by DRL
to save resource costs without violating any constraints.

The third challenge is how to make decisions to satisfy the
high-dimensional constraints in RLSP problem. In DRL, the
agent conducts trial-and-error exploration in the solution space
to learn a policy that maximizes long-term reward. However,

in RLSP problem, high-dimensional constraints lead to mas-
sive infeasible solutions, which makes random exploration in
DRL frequently violate constraints, which is unacceptable for
mission-critical applications. To address this challenge, we em-
ploy safe reinforcement learning, which aims to learn policies
to maximize long-term rewards while respecting constraints.
Inspired by human intervention-based safe reinforcement learn-
ing algorithms, we design an expert intervention algorithm to
prevent constraint violations. The algorithm is triggered when
the action output by the DRL violates the constraints, and it
tries to replace the action that violates the constraints with a
high-quality feasible solution.

The final challenge is that when providing an arbitrary num-
ber of instances for each SF, the routing paths grow exponen-
tially, which is unacceptable. As mentioned in the previous
section, when |Mi|= 7 and |E|= 20, in the worst case, there
are 207 = 1.28 ∗ 109 routing paths. When determining whether
the decision is feasible, we need to check all these paths to
determine its reliability. Therefore, based on our insight, we
limit the number of instances of each SF to no more than a
constant ε, which is achieved by using top-ε rounding for the
solution output by the neural network.

2) Workflow in Algorithm Framework: As shown in Fig. 4,
our algorithm consists of three components, including DRL in
the agent, pruning algorithm and expert intervention algorithm.
First, the agent discovers the state from the environment and
takes action based on that state. If the action output by the
agent is a feasible solution, the pruning algorithm is called to
prune unnecessary instances in the action, so that the modified
action becomes a critical point in the solution space, which
satisfies the constraints and has no unnecessary SF instances.
On the contrary, if the output action is an infeasible solution, the
expert intervention algorithm is used to replace the infeasible
solution with a high-quality feasible solution. Then, the action
is conducted in the environment and generates corresponding
rewards. Finally, the agent updates the neural network based
on the feedback reward to maximize the long-term reward.

B. Algorithm Design

1) RL Model: RL can be modeled as a tuple 〈S,A,R〉,
which indicate the state, action, and reward, respectively. These
three elements can be modeled as follows.

State. As shown in Fig. 4, the state in the
environment includes information about that newly
arrived service request and ESs. That is, S =
〈Ri,Li, ri,j , ci,j , bi,j , τe, κe,e′ , re, Ce,Be,e′ , le,e′ , l

i
e, ∀j ∈Mi,

e ∈ E , (e, e′) ∈ L〉. In this case, the size of the state is
3|Mi|+ 4|E|+ 3|L|+ 2. Obviously, the state size will
vary with the number of SFs in the service, which does
not match neural networks with fixed input layers. To
overcome this issue, we express information about the
service in a redundant manner. This is reasonable because
the number of SFs in typical services does not exceed 7
[38]. Assume that the maximum service length is |M|. Then,
we model the service information with length |M|. If the
service length is less than |M|, we fill it with zero. Then,

Authorized licensed use limited to: Nanjing University. Downloaded on January 13,2024 at 16:15:07 UTC from IEEE Xplore. Restrictions apply.

242 IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 1, JANUARY 2024

Algorithm 1 DRL Algorithm
Input: Parameters in RLSP.
Output: xi,j

e , yi,je , zi,je,e′ : decision variables.
1: xi,j

e , yi,je ↼ call DDPG;
2: /*Top-ε Rounding*/
3: xi,j

e ↼ 0, ∀j ∈Mi, e ∈ E ;
4: for j ∈Mi do
5: for iteration ∈ {1, 2, ..., ε} do
6: e ↼ argmaxe{xi,j

e |xi,j
e = 0, ∀e ∈ E};

7: xi,j
e ↼ perform rounding on xi,j

e ;
8: end for
9: e ↼ argmaxe{yi,je |xi,j

e = 1, ∀e ∈ E};
10: yi,je ↼ 1;
11: Caculate zi,je,e′ based on Eq. (5);
12: end for

S = 〈Ri,Li, ri,j , ci,j , bi,j , τe, κe,e′ , re, Ce,Be,e′ , le,e′ , l
i
e, ∀j ∈

{1, ..., |M|}, e ∈ E , (e, e′) ∈ L〉. Then, the state size is
3|M|+ 4|E|+ 3|L|+ 2.

Action. The action is needed to make backup, deployment,
and primary instance selection decisions (e.g., xi,j

e , yi,je , zi,je,e′).
Since zi,je,e′ can be obtained by Eq. (5), after yi,je is deter-
mined. Then, the action can be denoted as A= 〈xi,j

e , yi,je , ∀j ∈
Mi, e ∈ E , e′ ∈ E〉. The action size is 2|M|i|E|. The action size
varies with the number of SFs in the service. Similar to the state
model, we also model the agent’s action in a redundant manner.
Then, A= 〈xi,j

e , yi,je , ∀j ∈ {1, ..., |M|}, e ∈ E〉, and the action
size is 2|M||E|.

Reward. The reward is the feedback from the environment
that indicates the quality of the action. In RLSP problem, we
aim to minimize the resource cost. The higher the resource
cost, the smaller the reward. Besides, once the action output
by the agent violates the constraint, it may lead to service
request rejection and revenue loss, which should be punished.
Therefore, we can define the reward as R=−Ci − ρoi, where
oi indicates whether the output action violates the constraint, oi

is 0 if it is satisfied, and 1 otherwise. ρ is a constant indicating
the penalty factor.

2) DRL Algorithm: DRL is designed for the agent. In the
RL model above, the state is continuous, and the action is
large-scale and discrete. Therefore, we adopt a typical DRL
algorithm, called DDPG [19], which can effectively deal with
continuous state and large-scale discrete action. After defining
the action, state, and reward above, the DDPG is specified.
However, as mentioned above, for the fourth challenge, in the
worst case, the neural network may deploy instances for each SF
on all ESs, resulting in the exponential time required to verify
the feasibility of the decision. We address this challenge based
on the following insights.

Lemma 1: When the latency requirement is negligible, pro-
viding ε= 4 instances for each SF satisfies almost all service
reliability requirements in the general case, where ri,j ≥ 0.995,
re ≥ 0.99, |M| ≤ 7.

Proof: See Appendix C (available online).
The above insight inspired us to limit the number of

instances provided for each SF, which does not sacrifice

Algorithm 2 Pruning Algorithm

Input: xi,j
e : action output by DRL agent.

Output: A: binary variable indicates whether to accept the
request; xi,j

e , yi,je , zi,je,e′ : decision variables.
1: A↼ 1;
2: while True do
3: Calculate Ψi,j

e , ∀j ∈Mi, e ∈ E by Eq. (18);
4: H= {(j, e), ∀j ∈Mi, e ∈ E|xi,j

e = 1,Δi,j
e = 0};

5: if H is empty then
6: A↼ 0, Break;
7: end if
8: j, e= argmaxj,e{Ψi,j

e , ∀(j, e) ∈H};
9: xi,j

e ↼ 0;
10: Calculate �i by Eq. (17);
11: end while

feasible solutions while avoiding the exponential time to verify
feasible solutions.6 Thus, we redefine the output of DDPG
as A= 〈xi,j

e , yi,je , ∀j ∈ {1, ..., |M|}, e ∈ E〉, where xi,j
e , yi,je ∈

[0, 1]. Then, we perform top-ε rounding for xi,j
e to obtain xi,j

e ,
as shown in Algorithm 1. This is used to ensure that the number
of instances of each SF in the action output by the DRL does
not exceed ε, further ensuring that each action can be verified
as a feasible solution in polynomial time. Then, we select the
instance on the ES with the maximum value (yi,je) as the primary
instance of SF mi,j . After that, we can determine which links
the service’s traffic traverses via Eq. (5). The details of the
DDPG algorithm are omitted for brevity, and please refer to
[19] for details.

3) Pruning Algorithm: As mentioned above, when a DRL
agent outputs an action that does not violate constraints, it may
contain unnecessary instances. For optimality, we need to de-
sign a pruning algorithm that removes unnecessary instances of
the action without sacrificing constraints. Naturally, we need to
decide which instances to prune preferentially. For this purpose,
we define a priority

Ψi,j
e = τec

i,j (18)

The motivation behind the definition is that we prefer to prune
instances with high resource cost, which leads to more resource
cost reduction.7

Then, the pruning algorithm is designed as shown in Algo-
rithm 2. In the algorithm, we iteratively prune unnecessary in-
stances for the action. Specifically, we first calculate the priority
for each instance. Then, we further record those instances that
can be pruned without violating constraints (Δi,j

e is a binary
variable indicating whether the constraint will be violated after
the instance of SF mi,j on ES e is pruned.). If no instances
can be pruned (otherwise, the constraint is violated), the prune
operation is terminated. Otherwise, we prune the instance with
the highest priority.

6For example, when |E|= 20, |Mi|= 7, ε= 4. In the worst case, there
are 47 = 16384 possible routing paths. This is acceptable.

7Reliability is ignored in the priority definition, due to the slight loss of
reliability caused by pruning an SF instance. Moreover, once pruning an SF
results in a reliability violation, it is excluded.

Authorized licensed use limited to: Nanjing University. Downloaded on January 13,2024 at 16:15:07 UTC from IEEE Xplore. Restrictions apply.

ZENG et al.: SAFEDRL: DYNAMIC MICROSERVICE PROVISIONING WITH RELIABILITY AND LATENCY GUARANTEES IN EDGE ENVIRONMENTS 243

4) Expert Intervention Algorithm: The expert intervention
algorithm is designed to output a high-quality solution to re-
place the constraint violation action output by DRL. There-
fore, in this algorithm, we need to make resource-efficient
backup, deployment, and primary instance selection decisions
to meet the reliability and latency requirements of the service.
Next, we give the following three insights to guide the above
three decisions.

Backup. Although more backups may bring higher reliabil-
ity, it also incurs higher resource costs. Therefore, we need to
determine how to provide backups cost-effectively to meet the
service reliability requirements.

Lemma 2: Service reliability is less than or equal to the
reliability of the SF with the lowest reliability, that is, �i ≤
min{Ri,j , ∀j ∈Mi}.

Proof: Based on Eq. (17), we have

�i =Ri −
∑

pi,k∈Pi

R̃i,k ≤Ri =
∏

j∈Mi

Ri,j , (19)

where the inequality holds because the path reliability is not
less than 0, that is, R̃i,k ≥ 0. The second equality is based on
Eq. (12).

Since 1≥Ri,j ≥ 0, based on Eq. (19), we have

�i ≤Ri,j , ∀j ∈Mi. (20)

This implies,

�i ≤min{Ri,j , ∀j ∈Mi}. (21)

The above lemma inspires us to provide backup for the SF
with the lowest reliability to efficiently improve the service
reliability to meet its reliability requirements.

Deployment. Deploying SF instances to reliable ESs may
bring higher resource costs, but may face higher charges. There-
fore, we define a priority metric to measure the reliability im-
provement per unit of resource cost as

φi,j
e =

Θj,e −�i

τeci,j
, (22)

where �i is the reliability obtained by the current decision,
and Θj,e denotes the reliability obtained after further deploying
an instance on the ES e for SF mi,j . The motivation behind
this priority definition is that we prefer to deploy SF instances
to the ES that brings higher reliability improvements per unit
resource cost.

Primary instance selection. As mentioned earlier, each SF
is deployed with no more than ε (ε= 4) instances, and generally,
each service consists of no more than 7 SFs (|M| ≤ 7) [39],
resulting in a small solution space (≤ 47 = 16384) after the
backup and deployment decision (xi,j

e) is determined. Thus, we
can explore all possible primary instance selection decisions to
obtain the most cost-effective one, while traffic is forwarded on
the primary instances without exceeding link capacity.

Based on the above insight, we designed the expert inter-
vention algorithm as shown in Algorithm 3. In this algorithm,
we first initialize the decisions and service reliability. We then

Algorithm 3 Expert Intervention Algorithm
Input: Parameters in RLSP.
Output: A: binary variable indicates whether to accept the

request; xi,j
e , yi,je , zi,je,e′ : decision variables.

1: A↼ 1;
2: �i ↼ 0, xi,j

e ↼ 0, yi,je ↼ 0, zi,je,e′ ↼ 0, ∀j ∈Mi, e ∈ E ;
3: while �i < R

i do
4: Calculate Ri,j , ∀j ∈Mi by Eq. (16);
5: j ↼ argminj∈Mi{Ri,j |

∑
e∈E x

i,j
e ≤ ε};

6: E ′ ↼ {e ∈ E|xi,j
e ↼ 0, Ce ≥ ci,j};

7: if E ′ is empty or j =None then
8: A↼ 0, Break;
9: end if

10: Calculate φi,j
e , ∀e ∈ E ′ by Eq. (22);

11: e ↼ argmaxe∈E′ φi,j
e ;

12: xi,j
e ↼ 1;

13: Ce ↼Ce − ci,j ;
14: Update �i by Eq. (17);
15: end while
16: if A= 1 then
17: Calculate Pi,Pi

based on Eq. (9) and Eq. (11);
18: p̃i ↼ argmin

pi,k∈Pi−Pi{
∑

j∈Mi

∑
e,e′∈L bi,jκe,e′z

i,j
e,e′ |∑

j∈Mi bi,jz
i,j
e,e′ ≤ Be,e′ , (e, e

′) ∈ pi,k};
19: if p̃i =None then
20: A↼ 0, Break;
21: end if
22: zi,je,e′ ↼ 1, ∀(e, e′) ∈ p̃i;
23: Caculate yi,je based on Eq. (5);
24: Be,e′ ↼ Be,e′ −

∑
j∈Mi bi,jz

i,j
e,e′ , ∀(e, e′) ∈ p̃i;

25: end if

iteratively add instances to the service to meet its reliability
constraints. Specifically, we first calculate the reliability of each
SF and obtain the one that has the lowest reliability and has no
more than ε instances. Subsequently, we record those ESs with
sufficient capacity to accommodate the selected SF. Then, we
calculate the priority of each ES and extract the ES with the
highest priority. Further, we add instances on the ES with the
highest priority for the SF with the lowest reliability. The above
operations are terminated until service reliability is satisfied, no
ESs are available to accommodate SF instances, or all SFs have
ε instances. If the reliability is satisfied, we calculate the set
of paths (Pi − Pi

) that do not violate the latency constraint
based on Eq. (9) and Eq. (11), and select the one with the
minimum resource cost and meeting the capacity constraint
from them. Based on this, we obtain the primary instance se-
lection decision and update the remaining link capacity (the
capacity of links and ESs remains unchanged when the service
is rejected).

5) SafeDRL: The SafeDRL algorithm workflow is shown
in Algorithm 4. The algorithm is triggered when a new service
request arrives. The algorithm first calls DRL algorithm to make
an action. If this action is a feasible solution, then the pruning
algorithm is invoked to prune unnecessary instances for it to
save resource costs without violating constraints. Conversely, if
the decision is an infeasible solution, then an expert intervention

Authorized licensed use limited to: Nanjing University. Downloaded on January 13,2024 at 16:15:07 UTC from IEEE Xplore. Restrictions apply.

244 IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 1, JANUARY 2024

Algorithm 4 SafeDRL Algorithm
Input: Parameters in RLSP.
Output: A: binary variable indicates whether to accept the

request; xi,j
e , yi,je , zi,je,e′ : decision variables.

1: xi,j
e , yi,je , zi,je,e′ ↼ Algorithm 1;

2: if xi,j
e , yi,je , zi,je,e′ is feasible then

3: xi,j
e , yi,je , zi,je,e′ ,A↼ Algorithm 2;

4: else
5: xi,j

e , yi,je , zi,je,e′ ,A↼ Algorithm 3;
6: end if

algorithm is invoked to replace the decision with a high-quality
solution.

C. Algorithm Analysis

Next, we analyze the theoretical properties of our algo-
rithm, including the algorithm complexity and its approxi-
mation ratio.

1) Algorithm Complexity: In SafeDRL algorithm, the com-
putational complexity in the offline training process is pro-
portional to the size of the training data and the training
period. After offline training, we can leverage the trained model
to perform online inference, i.e., make backup, deployment
and primary instance selection decisions for newly arrived
services. Since the training process is run offline, we mainly
focus on the computational complexity in the online running
process [15].

Theorem 3: In SafeDRL algorithm, the online running pro-
cess runs in O(NM2 +M|E|+ |L|+ |E|2).

Proof: As shown in Algorithm 4, SafeDRL algorithm in-
cludes three algorithms, called DRL algorithm, expert inter-
vention algorithm and pruning algorithm. We first analyze
the complexity of DRL algorithm. Assume that there are N

hidden layers in the neural network of DRL algorithm, each
layer contains M neurons. As the RL model, the state size is
3|M|+ 4|E|+ 3|L|+ 2 and the action size is 2|M||E|. That
is, the input and output layers of DRL’s neural network con-
tain 3|M|+ 4|E|+ 3|L|+ 2 and 2|M||E| neurons. Then, the
DRL algorithm runs in O(NM2 +M|M||E|+M|L|). Second,
we analyze the complexity of the pruning algorithm. In the
worst case, with |M||E| instances, pruning one instance takes
O(|M||E|). Checking whether the number of instances of each
SF exceeds a threshold needs O(|M||E|). Therefore, the prun-
ing algorithm runs in O(|M|2|E|2). Finally, we analyze the
complexity of the expert intervention algorithm. In the worst
case, the algorithm adds ε|M| instances to a service, adding one
instance runs in O(|M||E|). Besides, in the worst case, there
are ε|M| paths that satisfy the latency constraint, and calculate
the bandwidth cost of each one and check its capacity constraint
consumption O(|L|+ |M|2). Note that, |M| and ε are no more
than a small constant. Thus, the expert intervention algorithm
runs in O(|E|+ |L|). Obviously, based on the above analysis,
the SafeDRL algorithm runs in O(NM2 +M|E|+ |L|+ |E|2).

2) Algorithm Approximation: To facilitate the following
theoretical analysis, we define two variables

τmin =min{τe, ∀e ∈ E},
τmax =max{τe, ∀e ∈ E},
κmin =min{κe,e′ , ∀(e, e′) ∈ L},
κmax =max{κe,e′ , ∀(e, e′) ∈ L}. (23)

Theorem 4: When all service requests are accepted, Safe-
DRL algorithm approximates the optimal solution by factor
max{ ετmax

τmin
, κmax

κmin
}.

Proof: See Appendix D (available online).

V. EVALUATION

In this section, we first present the evaluation settings, then
discuss the simulation results.

A. Settings

Evaluation environment. We implement a Python-based
simulator and use PyTorch to build the machine learning frame-
work. All simulations are conducted on a computer with 8-Core
Intel(R) Xeon(R) CPU @ 3.19GHz, 16G RAM.

Microservice. In our evaluation, Each service consists
of 1-7 microservices, which are typical microservice chain
lengths [39]. Besides, the computational and bandwidth re-
source required by each microservice is derived from the
Alibaba cluster-trace-microarchitecture-v2022 trace data [40].
Besides, the software reliability of microservices is distributed
in [0.995, 0.99999] [41]. Moreover, the reliability requirements
of services are distributed in [0.99, 0.999999], and the latency
requirements of services are distributed in [5-10] ms [5].

Edge Sites. In our evaluation, there are 30 ESs, which are
interconnected by overlay links. Each link has a latency in the
range of [1-10] ms [42]. The computing resource on each ES is
also derived from the Alibaba cluster-trace-microarchitecture-
v2022 trace data. The hardware reliability is distributed in
[0.99− 0.99999], which is obtained from typical infrastructure
providers [43]. The cost per unit of computing and bandwidth
resources on each ES is distributed between 1-10 units [27],
[28], which is normalized.

Parameters. Each neural network has three layers, and each
hidden layer contains 1024 neurons [44]. The learning rates
for Actor and Critic are 0.001 and 0.003 [14], respectively.
The discount factor is 0.99. The penalty parameter ρ is set to
100, which is set based on the resource cost. Besides, we set
ε= 4, |I|= 20. The requests arrive one by one, in which future
requests are unknown. The above parameters are adopted as
default settings unless otherwise specified. All the data points
are collected from 20 runs.

Algorithms Comparison. We evaluate SafeDRL with the
following algorithms.

• DRL: This algorithm is a simplified version of our algo-
rithm, where the action output by DRL [19] is directly
applied to the environment.

• EI: The expert intervention (EI) algorithm is a simplified
version of our algorithm and is designed based on our
insights without DRL assistance.

Authorized licensed use limited to: Nanjing University. Downloaded on January 13,2024 at 16:15:07 UTC from IEEE Xplore. Restrictions apply.

ZENG et al.: SAFEDRL: DYNAMIC MICROSERVICE PROVISIONING WITH RELIABILITY AND LATENCY GUARANTEES IN EDGE ENVIRONMENTS 245

Fig. 6. Compared with the optimal solution in resource cost and execution
time.

• RABAI: This is an improved version of RABA [6], where
both hardware and software reliability are considered.

• RDSSAI: This is an improved version of RDSSA [9],
where DRL is used to make deployment decisions.

• Optimal solution: The optimal solution is obtained by
exploring the solution space by the branch and bound
method.

B. Simulation Result

1) Optimality: We evaluate the optimality of our algorithm
by comparing it with the optimal solution in terms of resource
cost and execution time. Since solving the optimal solution is
time-consuming, we set |E|= 5, |M|= 1, which is a small-
scale special case.8 The evaluation results are shown in Fig. 6.

As shown in Fig. 6(a), our algorithm is always close to the
optimal solution in terms of resource cost. In the worst case,
when the number of service requests is 3, the resource cost
of our algorithm and the optimal solution is 10.37 and 8.78,
respectively. This means that the gap between our algorithm
and the optimal solution is no more than 15.34%. Besides, the
standard deviation of our algorithm and the optimal solution
is no more than 6.71. Therefore, our algorithm has good op-
timality and is close to the optimal solution, especially in our
algorithm, future requests are unknown.9

The execution time results of our algorithm and the optimal
solution are shown in Fig. 6(b). The execution time of our
algorithm is significantly faster than that of the optimal solution.
When there are 5 service requests, the execution time of our
algorithm is 0.19 s, while it takes 2369 s to obtain the optimal
solution. That is, our algorithm is 12468 times faster than the
optimal solution. This is because the optimal solution algo-
rithm needs to explore the optimal solution in a huge solution
space, which is time-consuming, even after branch and bound.
Moreover, the execution time of the optimal algorithm increases
exponentially, which is unacceptable. Therefore, we conclude
that our algorithm has good optimality and can be well close
to the optimal solution while running significantly faster than
solving the optimal solution.

2) Superiority: We evaluate the superiority of our algorithm
by comparing it with other algorithms in resource cost and

8The reason for this setting is to obtain the optimal solution in a suitable
time, where the optimal solution is obtained by exploring a huge solution
space, which grows exponentially as |E| and |M| increases. For example,
when |E|= 5, |M|= 2, |I|= 5, the optimal solution was not obtained after
24 hours of running, let alone 20 runs for averaging.

9In the optimal solution algorithm, all service requests are known.

Fig. 7. Compared with other solutions in resource cost.

Fig. 8. Compared with other solutions in service acceptance ratio.

service acceptance ratio. The resource cost includes bandwidth
resource cost and computing resource cost. The results are
shown in Fig. 7 and Fig. 8.

As shown in Fig. 7(a), the resource cost of our algorithm
is always lower than other algorithms under different
numbers of services. When there are 20 ESs, the average
resource costs of EI, SafeDRL, DRL, RABAI, and
RDSSAI are 300.87, 256.77, 674.38, 506.65, and 719.26,
respectively. That is, SafeDRL algorithm can reduce the
resource cost by 14.66%, 61.93%, 49.32% and 64.3%
compared to EI, DRL, RABAI and RDSSAI. This also means
that our algorithm can reduce the resource cost by up to
49.32% compared to existing algorithms (RABAI, RDSSAI).
This is because, compared with rule-based algorithms (EI,
RABAI), SafeDRL can effectively capture delayed rewards
and can more effectively extract the rules behind complex
environments by neural networks. Compared with DRL-based
algorithms (DRL, RABAI), SafeDRL algorithm can use a
pruning algorithm to prune unnecessary instances, which
is helpful for exploring the solution space more efficiently
and avoiding unnecessary action exploration. Besides, as the
number of service requests increases, the resource cost of the
four algorithms increases, as more services consume more
resource cost. Similar results can be found in Fig. 7(b), the
resource cost of our algorithm is always lower than other
algorithms under different numbers of ESs. When there are
40 ESs, SafeDRL algorithm can reduce the resource cost by
24.37%, 72.95%, 50.32%, and 48.03% compared to EI, DRL,

Authorized licensed use limited to: Nanjing University. Downloaded on January 13,2024 at 16:15:07 UTC from IEEE Xplore. Restrictions apply.

246 IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 1, JANUARY 2024

RABAI, and RDSSAI. This means that our algorithm can
reduce the resource cost by up to 48.03% compared to existing
algorithms (RABAI, RDSSAI).

Fig. 8 shows the results of our algorithm and other algo-
rithms on service acceptance ratio under different number of
ESs, service latency and reliability requirements. As shown in
Fig. 8(a), our SafeDRL and EI algorithms always accept all
service requests, while DRL, RDSSAI, and RABAI algorithms
suffer from frequent service request rejections. For example,
when there are 20 service requests, the service acceptance ratios
of algorithms DRL, RABAI, and RDSSAI are 33%, 19%, and
45%. This means that our algorithm can improve the service
acceptance ratio of existing algorithms (RABAI and RDSSAI)
by 81% and 55%. This is due to the fact that existing reliable
service provisioning algorithms ignore latency, which can lead
to potential reliability violations. Moreover, DRL and RDSSAI
algorithms need to explore the solution space with massive
infeasible solutions in a trial-and-error manner, which results in
frequent violations of constraints for output actions. In addition,
as the number of ES increases, the service acceptance ratio of
DRL gradually increases. This is because in DRL algorithm,
more ESs lead to more ESs being deployed with instances for
each SF. Similar results can be found in Fig. 8(b), SafeDRL
and EI can still accept all service requests. In addition, com-
pared to L

i = 5, in DRL, RDSSAI and RABAI algorithms,
the service acceptance ratio is higher when L

i = 10. This is
because the looser the latency requirements of each service, the
fewer paths violate the latency constraints, and the more reliable
they are.

As shown in Fig. 8(c), SafeDRL and EI can still accept
all service requests, while service requests are frequently re-
jected in DRL, RDSSAI, and RABAI algorithms under dif-
ferent service reliability requirements. When R= 0.99, the re-
liability acceptance ratio of DRL, RABAI, and RDSSAI are
88.0%, 37.5%, and 54.5%. Besides, the service acceptance
ratio of DRL algorithm gradually decreases with the increase
in reliability requirements. This is because higher reliability
requirements lead to more infeasible solutions in the solu-
tion space, and random exploration will lead to more frequent
constraint violations. The service acceptance ratio of RDSSAI
algorithm does not decrease significantly with the increase in
reliability requirements because it provides more instances for
a service when it has higher reliability requirements. Similar
results can be found in Fig. 8(d). In conclusion, the above
simulation results verify the superiority of our algorithm over
other algorithms in terms of resource cost and service accep-
tance ratio.

Fig. 9 shows the results of our algorithm and other algorithms
on the average number of SF backups under different reliability
requirements. As the reliability requirement increases, the num-
ber of SF backups in all algorithms increases gradually, because
higher reliability requires more backup instances. Besides,
our algorithm consumes fewer backup instances compared to
DRL, since redundant backup instances are pruned. Moreover,
our algorithm consumes almost or less backup instances to
meet service reliability, which means that our algorithm can
meet service requirements more resource-efficiently. Note that

Fig. 9. Compared to other solutions in average number of SF backups.

Fig. 10. Compared to other solutions in convergence and execution time.

another reason our algorithm consumes less cost is that it is
more cost-efficient. Finally, the number of backups is slightly
less as the latency requirements are looser. This is because
lower latency requirements result in more paths meeting the la-
tency requirements, which in turn leads to higher reliability and
fewer backups.

3) Practicality: We evaluate the practicality of our algo-
rithm by comparing it with other algorithms in terms of con-
vergence and execution time. The results are shown in Fig. 10.
As shown in Fig. 10(a), the total cost of RABAI and our EI
algorithms is 522.58 and 372.76, respectively. The total cost
includes the resource cost and the penalty cost due to con-
straint violation. This shows that the EI algorithm we designed
has good performance. More importantly, both our SafeDRL
and DRL gradually converge to a lower resource cost with
increasing training episodes, while the total cost of RABAI is
jittery. This may be due to the fact that RDSSAI algorithm
may be frequently penalized for constraint violations, resulting
in non-convergence. Besides, SafeDRL algorithm converges to
the lowest value (262.44) among these algorithms. This demon-
strates that our SafeDRL has good optimality and convergence.
As shown in Fig. 10(b), the execution time of our algorithm
is longer than other algorithms. This is due to our algorithm
combining three algorithms, which involve more complex pro-
cessing. Nonetheless, we can find that the average execution
time of SafeDRL is always less than 1 s, which is acceptable
for service provisioning. Besides, the algorithm can also be
accelerated by hardware acceleration, such as GPU.

VI. CONCLUSION

Achieving high-reliable and low-latency service resources
cost-effectively is challenging in dynamic environments, due to
the delayed rewards brought by future service requests, high-
dimensional resource constraints, and heterogeneous infras-
tructure and service requests. To capture these challenges, we

Authorized licensed use limited to: Nanjing University. Downloaded on January 13,2024 at 16:15:07 UTC from IEEE Xplore. Restrictions apply.

ZENG et al.: SAFEDRL: DYNAMIC MICROSERVICE PROVISIONING WITH RELIABILITY AND LATENCY GUARANTEES IN EDGE ENVIRONMENTS 247

formulate the reliable and low-latency service provision prob-
lem as a nonlinear integer programming problem, prove its NP-
hardness, and analyze its challenges. To address the problem
and tackle its challenges, we design a SafeDRL algorithm for
learning a policy that maximizes long-term rewards to capture
delayed rewards while respecting high-dimensional resource
constraints. Specifically, for optimality, we design a pruning al-
gorithm to prune unnecessary instances in the action that do not
violate constraints. To cope with high-dimensional constraints,
we design an expert intervention algorithm based on our in-
sights to generate high-quality feasible solutions to replace
constraint-violating actions. This algorithm is rigorously proved
to output solutions with bounded approximation guarantees in
general cases. Finally, extensive trace-driven evaluation results
verify that our algorithm significantly outperforms the state-
of-the-art solution in terms of total resource cost and service
acceptance ratio.

Machine learning-driven service provision is an emerg-
ing trend. SafeDRL brings DRL and expert knowledge-based
heuristics into service provisioning to achieve resource cost
efficiency while complying with constraints. Our future work
is to further integrate more novel machine learning techniques,
such as attention mechanism and contrast learning, to achieve
more efficient, flexible, and automated service delivery.

REFERENCES

[1] W. Bao, D. Yuan, B. B. Zhou, and A. Y. Zomaya, “Prune and plant:
Efficient placement and parallelism of virtual network functions,” IEEE
Trans. Comput., vol. 69, no. 6, pp. 800–811, Jun. 2020.

[2] Z. Xu et al., “Affinity-aware VNF placement in mobile edge clouds via
leveraging GPUs,” IEEE Trans. Comput., vol. 70, no. 12, pp. 2234–2248,
Dec. 2021.

[3] J. Zheng, Z. Zhang, Q. Ma, X. Gao, C. Tian, and G. Chen, “Multi-
resource VNF deployment in a heterogeneous cloud,” IEEE Trans.
Comput., vol. 71, no. 1, pp. 81–91, Jan. 2022.

[4] H. Rahimi, Y. Picaud, K. D. Singh, G. Madhusudan, S. Costanzo, and
O. Boissier, “Design and simulation of a hybrid architecture for edge
computing in 5G and beyond,” IEEE Trans. Comput., vol. 70, no. 8,
pp. 1213–1224, Aug. 2021.

[5] 3GPP TS 22.261, “Service requirements for the 5G system (Release
18),” Tech. Specification Group Serv. Syst. Aspects, Tech. Rep., 2021.

[6] J. Zhang, Z. Wang, C. Peng, L. Zhang, T. Huang, and Y. Liu,
“RABA: Resource-aware backup allocation for a chain of virtual net-
work functions,” in IEEE Conf. Comput. Commun. (INFOCOM), 2019,
pp. 1918–1926.

[7] J. Covitz, “Resilience at edge computing sites is resilience for the whole
IT environment,” 2019. [Online]. Available: https://www.networkworld.
com/article/3356439/resilience-at-edge-computing-sites-is-resilience-
for-the-whole-it-environment.html

[8] J. Fan, C. Guan, Y. Zhao, and C. Qiao, “Availability-aware mapping
of service function chains,” in Proc. IEEE Conf. Comput. Commun.
(INFOCOM), 2017, pp. 1–9.

[9] J. Jia, L. Yang, and J. Cao, “Reliability-aware dynamic service chain
scheduling in 5G networks based on reinforcement learning,” in Proc.
IEEE Conf. Comput. Commun. (INFOCOM), 2021, pp. 1–10.

[10] M. Bennis, M. Debbah, and H. V. Poor, “Ultrareliable and low-latency
wireless communication: Tail, risk, and scale,” Proc. IEEE, vol. 106,
no. 10, pp. 1834–1853, Oct. 2018.

[11] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement
learning: A survey,” J. Artif. Intell. Res., vol. 4, pp. 237–285, 1996.

[12] L. Gu, D. Zeng, W. Li, S. Guo, A. Y. Zomaya, and H. Jin, “Intelli-
gent VNF orchestration and flow scheduling via model-assisted deep
reinforcement learning,” IEEE J. Sel. Areas Commun., vol. 38, no. 2,
pp. 279–291, Feb. 2020.

[13] J. S. P. Roig, D. M. Gutierrez-Estevez, and D. Gündüz, “Management
and orchestration of virtual network functions via deep reinforcement
learning,” IEEE J. Sel. Areas Commun., vol. 38, no. 2, pp. 304–317,
Feb. 2020.

[14] R. Solozabal, J. Ceberio, A. Sanchoyerto, L. Zabala, B. Blanco, and
F. Liberal, “Virtual network function placement optimization with deep
reinforcement learning,” IEEE J. Sel. Areas Commun., vol. 38, no. 2,
pp. 292–303, Feb. 2020.

[15] J. Pei, P. Hong, M. Pan, J. Liu, and J. Zhou, “Optimal VNF placement
via deep reinforcement learning in SDN/NFV-enabled networks,” IEEE
J. Sel. Areas Commun., vol. 38, no. 2, pp. 263–278, Feb. 2020.

[16] W. Saunders, G. Sastry, A. Stuhlmüller, and O. Evans, “Trial without
error: Towards safe reinforcement learning via human intervention,” in
Proc. AAMAS, 2018, pp. 2067–2069.

[17] G. Warnell, N. Waytowich, V. Lawhern, and P. Stone, “Deep TAMER:
Interactive agent shaping in high-dimensional state spaces,” in Proc.
AAAI, vol. 32, no. 1, 2018.

[18] V. G. Goecks, G. M. Gremillion, V. J. Lawhern, J. Valasek, and
N. R. Waytowich, “Efficiently combining human demonstrations and
interventions for safe training of autonomous systems in real-time,” in
Proc. AAAI, vol. 33, no. 01, 2019, pp. 2462–2470.

[19] T. P. Lillicrap et al., “Continuous control with deep reinforcement
learning,” in Proc. ICML, 2016.

[20] R. Cohen, L. Lewin-Eytan, J. S. Naor, and D. Raz, “Near optimal
placement of virtual network functions,” in Proc. IEEE Conf. Comput.
Commun. (INFOCOM), 2015, pp. 1346–1354.

[21] P. Jin, X. Fei, Q. Zhang, F. Liu, and B. Li, “Latency-aware VNF chain
deployment with efficient resource reuse at network edge,” in Proc. IEEE
Conf. Comput. Commun. (INFOCOM), 2020, pp. 267–276.

[22] J. Martín-Pérez, F. Malandrino, C.-F. Chiasserini, and C. J. Bernardos,
“OKpi: All-KPI network slicing through efficient resource allocation,” in
Proc. IEEE Conf. Comput. Commun. (INFOCOM), 2020, pp. 804–813.

[23] X. Shang, Y. Huang, Z. Liu, and Y. Yang, “Reducing the service
function chain backup cost over the edge and cloud by a self-adapting
scheme,” in Proc. IEEE Conf. Comput. Commun. (INFOCOM), 2020,
pp. 2096–2105.

[24] E. Altman, “Constrained Markov decision processes,” Ph.D. dissertation,
INRIA, 1995.

[25] C. Tessler, D. J. Mankowitz, and S. Mannor, “Reward constrained policy
optimization,” in Proc. ICLR, 2019.

[26] NFV, GS and others, “Network functions virtualisation (NFV); archi-
tectural framework,” NFV ISG, vol. 2, no. 2, p. V1, 2013.

[27] “Oracle compute pricing,” 2022. [Online]. Available: https://www.oracle.
com/cloud/compute/pricing.html

[28] “Bandwidth pricing,” 2022. [Online]. Available: https://azure.microsoft.
com/en-us/pricing/details/bandwidth/

[29] A. Panda, W. Zheng, X. Hu, A. Krishnamurthy, and S. Shenker, “SCL:
Simplifying distributed SDN control planes,” in Proc. USENIX NSDI,
2017, pp. 329–345.

[30] T. ETSI, “ETSI TS 123 502 V16.7.0,” Procedures for the 5G System
(5GS) (3GPP TS 23.502 version 16.7.0 Release 16), 2021.

[31] T. ETSI, “ETSI TS 123 501 V17.5.0,” System Architecture for the 5G
System (5GS) (3GPP TS 23.501 version 17.5.0 Release 17), 2022.

[32] W. Fisher, M. Suchara, and J. Rexford, “Greening backbone net-
works: Reducing energy consumption by shutting off cables in bundled
links,” in Proc. 1st ACM SIGCOMM Workshop Green Network., 2010,
pp. 29–34.

[33] “End-to-end latency,” 2022. [Online]. Available: https://en.wikipedia.
org/wiki/End-to-end_delay

[34] M. Ghaznavi, E. Jalalpour, B. Wong, R. Boutaba, and A. J. Mashtizadeh,
“Fault tolerant service function chaining,” in Proc. ACM SIGCOMM,
2020, pp. 198–210.

[35] S. Sahhaf, W. Tavernier, D. Colle, and M. Pickavet, “Adaptive and
reliable multipath provisioning for media transfer in SDN-based overlay
networks,” Comput. Commun., vol. 106, pp. 107–116, 2017.

[36] P. Gill, N. Jain, and N. Nagappan, “Understanding network failures in
data centers: Measurement, analysis, and implications,” in Proc. ACM
SIGCOMM, 2011, pp. 350–361.

[37] W. Liang, Y. Ma, W. Xu, Z. Xu, X. Jia, and W. Zhou, “Request reliability
augmentation with service function chain requirements in mobile edge
computing,” IEEE Trans. Mobile Comput., vol. 21, no. 12, pp. 4541–
4554, Dec. 2022, doi: 10.1109/TMC.2021.3081681.

[38] W. Haeffner, J. Napper, M. Stiemerling, D. Lopez, and J. Uttaro,
“Service function chaining use cases in mobile networks,” IETF, Tech.
Rep., 2019.

[39] S. Luo et al., “Characterizing microservice dependency and per-
formance: Alibaba trace analysis,” in Proc. ACM SOCC, 2021,
pp. 412–426.

[40] “Cluster-trace-microarchitecture-v2022,” 2022. [Online]. Available:
https://github.com/alibaba/clusterdata

Authorized licensed use limited to: Nanjing University. Downloaded on January 13,2024 at 16:15:07 UTC from IEEE Xplore. Restrictions apply.

https://www.networkworld.com/article/3356439/resilience-at-edge-computing-sites-is-resilience-for-the-whole-it-environment.html
https://www.networkworld.com/article/3356439/resilience-at-edge-computing-sites-is-resilience-for-the-whole-it-environment.html
https://www.networkworld.com/article/3356439/resilience-at-edge-computing-sites-is-resilience-for-the-whole-it-environment.html
https://www.oracle.com/cloud/compute/pricing.html
https://www.oracle.com/cloud/compute/pricing.html
https://azure.microsoft.com/en-us/pricing/details/bandwidth/
https://azure.microsoft.com/en-us/pricing/details/bandwidth/
https://en.wikipedia.org/wiki/End-to-end_delay
https://en.wikipedia.org/wiki/End-to-end_delay
https://doi.org/10.1109/TMC.2021.3081681
https://github.com/alibaba/clusterdata

248 IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 1, JANUARY 2024

[41] R. Potharaju and N. Jain, “Demystifying the dark side of the middle:
A field study of middlebox failures in datacenters,” in Proc. ACM IMC,
2013, pp. 9–22.

[42] Y. Chen, C. Li, M. Lv, X. Shao, Y. Li, and Y. Xu, “Explicit data
correlations-directed metadata prefetching method in distributed file
systems,” IEEE Trans. Parallel Distrib. Syst., vol. 30, no. 12, pp. 2692–
2705, Dec. 2019.

[43] C. Cérin et al., “Downtime statistics of current cloud solutions,” Int.
Work. Group Cloud Comput. Resiliency, Tech. Rep., 2014.

[44] H. Zhu, V. Gupta, S. S. Ahuja, Y. Tian, Y. Zhang, and X. Jin, “Network
planning with deep reinforcement learning,” in Proc. ACM SIGCOMM,
2021, pp. 258–271.

[45] D. P. Williamson and D. B. Shmoys, The Design of Approximation
Algorithms. Cambridge, U.K.: Cambridge Univ. Press, 2011.

Yue Zeng received the M.S. degree from the
Department of Electronic Information Engineer-
ing at Southwest University, Chongqing, China, in
2019. He is currently working toward the Ph.D.
degree with the Department of Computer Science
and Technology at Nanjing University, China. His
research interests include network functions vir-
tualization, software defined networking, machine
learning for networking, distributed computing, and
edge computing.

Zhihao Qu (Member, IEEE) received the B.S. and
Ph.D. degrees in computer science from Nanjing
University, Nanjing, China, in 2009 and 2018, re-
spectively. He is currently an Associate Professor
with the College of Computer Science and Software
Engineering at Hohai University. His research in-
terests include the areas of wireless networks, edge
computing, and distributed machine learning.

Song Guo (Fellow, IEEE) is currently a full profes-
sor with the Department of Computer Science and
Engineering, The Hong Kong University of Science
and Technology. He is also the Changjiang Chair
Professor awarded by the Ministry of Education
of China. His research interests include edge AI,
mobile computing, and distributed systems. He has
been recognized as a highly cited researcher (Web
of Science). He was the recipient of more than 14
best paper awards from the IEEE/ACM conferences,
journals, and technical committees. He is the Editor-

in-Chief of the IEEE OPEN JOURNAL OF THE COMPUTER SOCIETY. He was
on the IEEE Communications Society Board of Governors, IEEE Computer
Society Fellow Evaluation Committee, and editorial board for a number
of prestigious international journals, including the IEEE TRANSACTIONS ON

PARALLEL AND DISTRIBUTED SYSTEMS, the IEEE TRANSACTIONS ON CLOUD

COMPUTING, and the IEEE INTERNET OF THINGS JOURNAL.

Baoliu Ye (Member, IEEE) received the Ph.D. de-
gree in computer science from Nanjing University,
China, in 2004. He is a Full Professor with the
Department of Computer Science and Technology,
Nanjing University. He served as a Visiting Re-
searcher with the University of Aizu, Japan, from
March 2005 to July 2006, and the Director of the
Division of Informatics, Hohai University currently.
His current research interests mainly include dis-
tributed systems, cloud computing, and wireless
networks with over 70 papers published in major

conferences and journals.

Jie Zhang (Member, IEEE) is currently working
toward the Ph.D. degree with the Department of
Computing, The Hong Kong Polytechnic University.
Her current research interests include edge com-
puting, federated learning, and deep reinforcement
learning.

Jing Li (Member, IEEE) received the B.Sc. and
Ph.D. degrees with the first class Honors from
The Australian National University, in 2018 and
2022, respectively. He is currently a Postdoctoral
Fellow with The Hong Kong Polytechnic Univer-
sity. His research interests include mobile edge
computing, Internet of Things, network function
virtualization, and combinatorial optimization. He
has published papers in top journals and con-
ferences such as the IEEE TRANSACTIONS ON

MOBILE COMPUTING, the IEEE TRANSACTIONS ON

PARALLEL AND DISTRIBUTED SYSTEMS, ACM TOSN, and the IEEE ICDCS.

Bin Tang (Member, IEEE) received the B.S. and
Ph.D. degrees in computer science from Nanjing
University, Nanjing, China, in 2007 and 2014,
respectively. He was an Assistant Researcher at
Nanjing University from 2014 to 2020, and also a
Research Fellow with The Hong Kong Polytechnic
University in 2019. He is currently a Professor
with Hohai University. His research interests include
the area of communications, network coding, and
distributed computing.

Authorized licensed use limited to: Nanjing University. Downloaded on January 13,2024 at 16:15:07 UTC from IEEE Xplore. Restrictions apply.

<<
	/CompressObjects /Off
	/ParseDSCCommentsForDocInfo false
	/CreateJobTicket false
	/PDFX1aCheck false
	/ColorImageMinResolution 200
	/GrayImageResolution 300
	/DoThumbnails false
	/ColorConversionStrategy /sRGB
	/GrayImageFilter /DCTEncode
	/EmbedAllFonts true
	/CalRGBProfile (Adobe RGB \0501998\051)
	/MonoImageMinResolutionPolicy /OK
	/AllowPSXObjects false
	/LockDistillerParams true
	/ImageMemory 1048576
	/DownsampleMonoImages true
	/ColorSettingsFile (None)
	/PassThroughJPEGImages true
	/AutoRotatePages /None
	/Optimize false
	/ParseDSCComments false
	/MonoImageDepth -1
	/AntiAliasGrayImages false
	/GrayImageMinResolutionPolicy /OK
	/JPEG2000ColorImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/ConvertImagesToIndexed true
	/MaxSubsetPct 100
	/Binding /Left
	/PreserveDICMYKValues false
	/GrayImageMinDownsampleDepth 2
	/MonoImageMinResolution 400
	/sRGBProfile (sRGB IEC61966-2.1)
	/AntiAliasColorImages false
	/GrayImageDepth -1
	/PreserveFlatness false
	/OtherNamespaces [
		<<
			/IncludeSlug false
			/CropImagesToFrames true
			/IncludeNonPrinting false
			/OmitPlacedBitmaps false
			/AsReaderSpreads false
			/Namespace [
				(Adobe)
				(InDesign)
				(4.0)
]
			/FlattenerIgnoreSpreadOverrides false
			/OmitPlacedEPS false
			/OmitPlacedPDF false
			/SimulateOverprint /Legacy
			/IncludeGuidesGrids false
			/ErrorControl /WarnAndContinue
		>>
		<<
			/IgnoreHTMLPageBreaks false
			/IncludeHeaderFooter false
			/AllowTableBreaks true
			/UseHTMLTitleAsMetadata true
			/MetadataTitle /
			/ShrinkContent true
			/UseEmbeddedProfiles false
			/TreatColorsAs /MainMonitorColors
			/MetricUnit /inch
			/RemoveBackground false
			/HonorBaseURL true
			/ExpandPage false
			/AllowImageBreaks true
			/MetadataSubject /
			/MarginOffset [
				0.0
				0.0
				0.0
				0.0
]
			/Namespace [
				(Adobe)
				(GoLive)
				(8.0)
]
			/OpenZoomToHTMLFontSize false
			/PageOrientation /Portrait
			/MetadataAuthor /
			/MobileCompatible 0.0
			/MetadataKeywords /
			/MetricPageSize [
				0.0
				0.0
]
			/HonorRolloverEffect false
		>>
		<<
			/IncludeProfiles true
			/ConvertColors /NoConversion
			/FormElements true
			/MarksOffset 6.0
			/FlattenerPreset <<
				/PresetSelector /MediumResolution
			>>
			/DestinationProfileSelector /UseName
			/MultimediaHandling /UseObjectSettings
			/PreserveEditing true
			/PDFXOutputIntentProfileSelector /UseName
			/BleedOffset [
				0.0
				0.0
				0.0
				0.0
]
			/UntaggedRGBHandling /LeaveUntagged
			/GenerateStructure false
			/AddRegMarks false
			/IncludeHyperlinks false
			/IncludeBookmarks false
			/MarksWeight 0.25
			/PageMarksFile /RomanDefault
			/UntaggedCMYKHandling /LeaveUntagged
			/AddPageInfo false
			/AddBleedMarks false
			/IncludeLayers false
			/IncludeInteractive false
			/AddColorBars false
			/UseDocumentBleed false
			/AddCropMarks false
			/DestinationProfileName (U.S. Web Coated \050SWOP\051 v2)
			/Namespace [
				(Adobe)
				(CreativeSuite)
				(2.0)
]
			/Downsample16BitImages true
		>>
]
	/CompressPages true
	/GrayImageMinResolution 200
	/CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
	/PDFXBleedBoxToTrimBoxOffset [
		0.0
		0.0
		0.0
		0.0
]
	/AutoFilterGrayImages false
	/EncodeColorImages true
	/AlwaysEmbed [
]
	/EndPage -1
	/DownsampleColorImages true
	/ASCII85EncodePages false
	/PreserveEPSInfo false
	/PDFXTrimBoxToMediaBoxOffset [
		0.0
		0.0
		0.0
		0.0
]
	/CompatibilityLevel 1.7
	/MonoImageResolution 600
	/NeverEmbed [
]
	/CannotEmbedFontPolicy /Error
	/PreserveOPIComments false
	/AutoPositionEPSFiles false
	/JPEG2000GrayACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
	/EmbedJobOptions true
	/JPEG2000ColorACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/MonoImageDownsampleType /Bicubic
	/DetectBlends true
	/EmitDSCWarnings false
	/ColorImageDownsampleType /Bicubic
	/EncodeGrayImages true
	/Namespace [
		(Adobe)
		(Common)
		(1.0)
]
	/AutoFilterColorImages false
	/DownsampleGrayImages true
	/GrayImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/AntiAliasMonoImages false
	/GrayImageAutoFilterStrategy /JPEG
	/GrayACSImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/ColorImageAutoFilterStrategy /JPEG
	/ColorImageMinResolutionPolicy /OK
	/ColorImageResolution 300
	/PDFXRegistryName (http://www.color.org)
	/MonoImageFilter /CCITTFaxEncode
	/CalGrayProfile (Dot Gain 15%)
	/ColorImageMinDownsampleDepth 1
	/PDFXTrapped /False
	/DetectCurves 0.0
	/ColorImageDepth -1
	/JPEG2000GrayImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/TransferFunctionInfo /Remove
	/ColorImageFilter /DCTEncode
	/PDFX3Check false
	/ParseICCProfilesInComments true
	/DSCReportingLevel 0
	/ColorACSImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/PDFXOutputConditionIdentifier (CGATS TR 001)
	/PDFXCompliantPDFOnly false
	/AllowTransparency false
	/UsePrologue false
	/PreserveCopyPage true
	/StartPage 1
	/MonoImageDownsampleThreshold 1.5
	/GrayImageDownsampleThreshold 1.5
	/CheckCompliance [
		/None
]
	/CreateJDFFile false
	/PDFXSetBleedBoxToMediaBox true
	/EmbedOpenType false
	/OPM 1
	/PreserveOverprintSettings true
	/UCRandBGInfo /Preserve
	/ColorImageDownsampleThreshold 1.5
	/MonoImageDict <<
		/K -1
	>>
	/GrayImageDownsampleType /Bicubic
	/Description <<
		/ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
		/GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
		/FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
		/KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
		/HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
		/NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
		/DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
		/CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
		/ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
		/DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
		/JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
		/SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
		/SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
		/CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
		/CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
		/ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
		/RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
		/HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
		/PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
		/NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
		/TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
		/POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
		/HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
		/SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
		/RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
		/ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
	>>
	/CropMonoImages false
	/DefaultRenderingIntent /Default
	/PreserveHalftoneInfo true
	/ColorImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/CropGrayImages false
	/PDFXOutputCondition ()
	/SubsetFonts false
	/EncodeMonoImages true
	/CropColorImages false
	/PDFXNoTrimBoxError true
>>
setdistillerparams
<<
	/PageSize [
		612.0
		792.0
]
	/HWResolution [
		600
		600
]
>>
setpagedevice

