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Abstract. Software-Defined Networking (SDN) has been introduced
into edge networks as a popular paradigm, leveraging its high pro-
grammability, where SDN controllers are enabled to centralize network
configuration and management. However, frequent flow fluctuations at
the edge can result in a large backlog of local flow requests in the process-
ing queue of the controllers, leading to high response delays. Although
optimized controller placement and assignment can reduce flow-setup
delay, existing approaches are limited in their ability to jointly opti-
mize controller placement and fine-grained flow assignment and address
high queuing delay of flow requests. In this paper, we investigate how to
jointly optimize controller placement and flow assignment under limited
controller capacity, to reduce the propagation delay of data nodes and
controllers and the queuing delay of flow requests, and therefore, reduc-
ing flow-setup delay. We systematically model the problem and propose
a traffic segmentation-based controller placement and flow assignment
algorithm. Simulation experimental results demonstrate that our scheme
can reduce the flow-setup delay by up to 21.6% compared to existing
solutions.

Keywords: Edge computing · software-defined networks · controller
placement and flow assignment · latency

1 Introduction

In recent years, the rise of the Internet of Things has led to the emergence
of edge computing as a new computing framework. As an significant technol-
ogy, edge computing brings computing resources closer to users, resulting in
lower latency and reduced energy consumption [1]. As another key technology,
Software-Defined Networking (SDN) enables the separation of control and data
planes, allowing for centralized control logic on the controller [2,3]. Thanks to
these two technologies, network and computing resources can be flexibly man-
aged and configured [4,5].

In an SDN-enabled edge network, the control plane and the data plane are
decoupled, rather than tightly coupled as in traditional networks. The controllers
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in the control plane manage the traffic in the network by setting flow rules for
the switches in the data plane [6,7]. The specific process of flow setup is as
follows. When a new flow arrives at a switch and there is no corresponding
forwarding rule, the switch notifies the controller to plan the routing path by
setting flow rules. The controller then computes the forwarding path for that flow
and pushes the corresponding flow rules to the switches in the data plane. The
aforementioned flow rule setup process introduces flow-setup delay. As networks
become larger and more complex, a single controller may not be able to handle
the massive flow requests and ensure reasonable flow-setup delay, and a single
point of failure can lead to network paralysis. As a result, the control plane
is typically implemented with multiple controllers that are logically centralized
but physically distributed. Thus, a critical issue is how to coordinate multiple
controllers to manage the entire network.

Many works have studied controller placement and switch assignment [4,8–
18], where controller placement refers to which nodes the controllers are placed
at, and switch assignment refers to which controllers the switches are assigned
to. First, several works [8,9] have studied switch assignment, which determines
which controllers to assign switches to, with a goal of minimizing delay or balanc-
ing load. However, edge network is dynamic while static controller placement is
lack of flexibility. Therefore, some works [4,10–18] further study controller place-
ment and switch assignment. Switch assignment is a coarse-grained node-based
assignment method compared to flow-based assignment, which bind data for-
warding nodes to a certain controller for management over a period of time.
The problem with this approach is that if the data forwarding nodes assigned
to a certain controller generate a large number of flow requests during a slot,
these flow requests will be assigned to the bound controller. At the edge, many
nodes have limited computing and storage resources, and the controller’s request
processing ability is relatively small. This results in a large backlog of requests
in the controller request queue, and the controller response delay for these flow
requests will be high. Thus, several studies [19,20] have focused on fine-grained
flow-based assignment that determines which controllers to assign the flows to.
However, they only consider flow assignment and ignore controller placement,
which may lead to inefficient controller plane layout.

Therefore, a critical issue is controller placement and flow assignment. Next,
we give an example to show its advantages in detail. As shown in Fig. 1, there
are four nodes (A, B, C, and D) that can be used to place controllers. As shown
in Fig. 1(a), the controllers are randomly placed in A and B, which leads to an
inefficient control plane layout. In this case, the propagation delay between the
controllers and the data plane forwarding devices is as high as 10 ms. Further-
more, the node-based assignment scheme assigns switch s1 to controller c1 and
switch s2 to controller c2. In this case, the queuing delay of flow requests handled
by controller c1 is as high as 11 ms, while controller c2 remained idle and under-
utilized. Figure 1(b) shows the optimized controller placement and flow-based
assignment scheme, which places controllers on nodes C and D. In this case,
the propagation delay between the controllers and the forwarding devices is no
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Fig. 1. A motivational example to show the importance of controller placement and
flow assignment.

higher than 3 ms, which is lower than random controller placement. In addition,
flow-based assignment scheme dynamically allocates flow requests of s1 to the
two controllers, which can effectively balance the workload between them. This
optimization reduces the queuing delay of the controller processing requests to 7
ms, which can improve the efficiency and service performance of the controllers.

Consequently, in this paper, we explore how to dynamically place controllers
and assign flows in edge networks to optimize the average flow-setup delay. We
present a traffic segmentation-based controller placement and flow assignment
scheme to address the high flow-setup delay challenge in edge networks. To the
best of our knowledge, this is the first work to combine optimized controller
placement and fine-grained flow assignment to tackle the problem of dynamic
controller placement and assignment in edge networks. Our proposed scheme
is a two-stage algorithm: a) Controller placement, in which we employ traffic
segmentation to divide the network into multiple traffic slices with approxi-
mately equal traffic loads, and then determine a suitable location for controller



24 S. Hua et al.

Related Work Decision Assignment granularity

Placement Assignment Flow-based

[8,9] ✗ ✓ ✗

[19,20] ✗ ✓ ✓

[4,10–18] ✓ ✓ ✗

Our scheme ✓ ✓ ✓

placement within each traffic slice, and b) Flow assignment, involving hierar-
chical flow assignment based on controller positions in the network. The main
contributions of this paper can be summarized as follows.

– We formulate the controller placement and flow assignment problem in SDN-
enabled edge networks, with the objective of minimizing the average flow-
setup delay, which we prove to be NP-hard.

– We introduce a traffic segmentation-based controller placement and flow
assignment algorithm to optimize the average flow-setup delay.

– Our proposed scheme outperforms existing approaches in several key indica-
tors, such as average flow-setup delay, percentage of high queuing delay flows,
and percentage of flow-setup delay constraint violated flows, as demonstrated
by experimental results.

The remainder of this paper is organized as follows. Section 2 discusses related
work and highlights the limitations of these works in SDN-enabled edge networks.
We introduce the system model and problem formulation in Sect. 3. In Sect. 4,
we propose a traffic segmentation-based controller placement and hierarchical
flow assignment algorithm. Section 5 presents the evaluation of our proposed
scheme.

2 Related Work

Heller et al. [10] first proposed the Controller Placement Problem (CPP) in
SDN. Afterwards, a large number of studies on controller placement and assign-
ment emerged. We divide the existing work into three categories: assignment
schemes, controller placement and assignment schemes, and controller placement
and assignment schemes in software-defined edge networks.

2.1 Assignment Schemes

Sun et al. [8] proposed a dynamic workload balancing scheme based on multi-
agent reinforcement learning, which outperformed optimization algorithms to
manipulate the mapping relationship between controllers and switches. Huang
et al. [9] devised a predictive online switch-controller association and control
devolution scheme, which reduced request latency significantly. Xie et al. [19]
proposed a light-weight and load-ware switch-to controller selection scheme and
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designed a general delay-aware switch-to-controller selection scheme to cut the
long-tail response latency and provide higher system throughput. Bera et al.
[20] proposed a dynamic scheme to assign the flow to the controller to minimize
the flow-setup delay and control overhead, which was more fine-grained than
the scheme of allocating the switch. This kind of work does not consider the
influence of controller position on the system.

2.2 Placement and Assignment Schemes

Guo et al. [11] jointly considered the deployment of SDN switches and controllers
to find the locations of updated switches, the locations of deployed controllers,
and the mappings between the controllers and the upgraded switches for hybrid
SDNs. The authors proposed MapFirst, which returned a high-quality solution
with a significant less CPU time. Wu et al. [12] used a deep Q-network to opti-
mize the network delay and load in the dynamic network, optimizing the location
of the controller, and dynamically adjusting the mapping between switches and
controllers. Basu et al. [13] took the controller placement problem and hypervisor
placement problem into consideration at the same time and propose an approach
of dynamically deploying controller-hypervisor pairs to provide a variety of net-
work functions with low latency. Bouzidi et al. [14] studied which controllers are
selected and enabled in a separate control plane how to partition the set of data
plane switches into clusters and assign them to these controllers. The network
span studied in the above work is relatively small, and the propagation delay of
communication between data nodes and controllers is not fully considered in the
decision of controller layout.

2.3 Placement and Assignment Schemes in SDN-Enabled Edge
Network

Qin et al. [4] placed the controllers in the static edge nodes in SDN-enabled edge
networks. The authors took the inter-controller and controller-node overheads
as two important factors to formulate the controller placement and assignment
problem at the edge and proposed exact and approximate algorithms to optimize
delay and overheads. Chen et al. [15] studied the adaptive controller placement
and assignment problem to adapt to the dynamic topology and time-varying
workload in SDN-based low-earth-orbit satellite networks. The authors proposed
control relation graph (CRG) and a CRG-based algorithm which outperforms
existing schemes in terms of response time and load balancing. Li et al. [16] pro-
posed a Louvain algorithm-based controller placement policy to solve the CPP in
SDN-IoV and a controller replacement policy to adapt to the dynamic topology
of IoV. The objectives are to optimize the control load, control delay, intra-
cluster delay and throughput. Li et al. [17] proposed an edge service mesh archi-
tecture with distributively deployed controllers and investigate the controller
placement problem toward communication cost minimization. Soleymanifar
et al. [18] introduce two novel maximum entropy based clustering algorithms
to address controller placement problem in wireless edge networks. However, the
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Table 1. Summary of Notations

Symbol Descriptions

G Undirected Network Graph

S Set of switches

C Set of controllers

F Set of flows

P Placement policy

A Assignment policy

δs,j Propagation delay of the shortest path between the switch s
and the controller placed at sj

αj(t) Flow-request arrival rate at the controller placed at sj

μj Execution rate of the controller placed at sj

wi Number of CPU cycles required by the controller to calculate
the forwarding path of the flow fi

Di Flow-setup delay of the flow fi

D Average flow-setup delay in time slot t

k Number of controllers

γ flow-setup delay bound

Decision variables Descriptions

xt
i Binary variable indicating whether a controller is placed at

switch

yt
ij Binary variable indicating whether the flow fi is assigned to

the controller cj placed at sj

above work adopts a node-based assignment method, which can easily cause long
waits for flow requests.

3 System Model and Problem Formulation

In order to realize the optimal placement and assignment of controllers, in this
section, we model the problem as a multi-constraint optimization problem, and
then show that it is a NP hard problem.

3.1 System Model

We consider an SDN-enabled edge network as depicted in Fig. 2, which has mul-
tiple controllers to be deployed in the system. The SDN-enabled edge network is
modeled as an undirected graph G(V,E) with n nodes, where V represents the
set of edge nodes, and E represents the set of network links between edge nodes.
Let S = {s1, s2, ..., sm} ∈ V denote the switch set and C = {c1, c2, ..., ck} denote
the controller set, where m, k ∈ N

+. Additionally, the set of flows in the network
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Fig. 2. An example of an SDN-enabled edge network.

is represented as F = {f1, f2, ..., fn} where n is a positive integer denoting the
number of flows within a time slot. Assuming that the set of flows assigned to
the controller cj is denoted with Cj , we have C1 ∪ C2 ∪ ... ∪ Ck = F .

To study the placement and assignment policy, We introduce two binary
optimization variable xt

i and yt
ij . The variable xt

i indicates whether a controller
is placed at switch si (xt

i = 1) or not (xt
i = 0). These variables constitute the

controller placement policy as

P = (xi ∈ {0, 1} : i = 0, 1, ..., n). (1)

The other variable yt
ij represents whether the flow fi is assigned to the controller

cj placed at sj (yt
ij = 1) or not (yt

ij = 0). These variables constitute the flow
assignment policy as

A = (yij ∈ {0, 1} : i = 0, 1, ..., n, j = 0, 1, ...,m). (2)

3.2 Flow-Setup Delay Model

When a switch receives a flow, it sends a Packet-in message to the controller, and
the controller processes and replies to it. The time taken for this entire process
is referred to as the flow-setup delay. The flow-setup delay we consider consists
of three delays: propagation delay, queuing delay and processing delay.

The communication between the controller and the switch needs to propa-
gate through the channel between each other. Therefore, the propagation delay
depends on the path delay which includes the process to send and to receive the
request. According to the shortest path algorithm [21], we can get the shortest
path between the switch and the controller. We assume that the switch associ-
ated with the flow request fi is s. Consequently, the propagation delay can be
defined as follows

Dprop
ij (t) = 2 ∗ δs,j . (3)
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where δs,j denotes the propagation delay of the shortest path between the switch
s and the controller placed at sj .

When the controller receives a Packet-in message, it puts it in its own message
processing queue. We need to account for the delay that the message experiences
while waiting to be processed in the queue, known as queuing delay. We refer to
the [20] for the modeling of queuing delay. The queuing delay depends on the
request arrival rate and the execution rate of the controller, and approximate the
flow-request arrival rate to a Poisson Process, which is mathematically denoted
as αj(t) =

∑k
i=0 yt

ij . Considering the M/M/1 queuing model,the queuing delay
of flow request fi processed on the controller placed at sj can be defined as
follows

Dque
ij (t) =

1
μj − αj(t)

. (4)

where μj denotes the execution rate of the controller placed at sj .
The processing delay is determined by the time it takes for the controller to

calculate the forwarding path for the flow. Let’s assume that the number of CPU
cycles required by the controller to calculate the forwarding path of the flow fi
is wi. The processing delay can be defined as follows

Dproc
ij (t) =

wi

μj
. (5)

When a packet arrives at a switch and the switch does not find a correspond-
ing entry in its flow table, the switch will send a flow request to the controller to
establish the forwarding path for that flow. The controller then accepts and pro-
cesses the request and sends the calculated forwarding path back to the switch.
Therefore, the control response delay of the controller placed at sj for a flow fi
is calculated as

Dij = Dprop
ij (t) + Dque

ij (t) + Dproc
ij (t) (6)

So the flow-setup delay of the flow fi is presented as follows

Di =
m∑

j=0

yt
ijx

t
jDij . (7)

Consequently, the average flow-setup delay in time slot t can be quantified as
follows

D =
n∑

i=1

Di. (8)

3.3 Problem Formulation

Our objective is to minimize the average flow-setup delay in the network. Based
on the flow-setup delay model above, We formulate the optimization problem as
flows



Joint Controller Placement and Flow Assignment 29

min
P ,A

D

s.t. ∀i ∈ [0,m],xt
i ∈ {0, 1} (9)

∀i ∈ [0, n], j ∈[0,m], yt
ij ∈ {0, 1} (10)

∀i ∈ [0, n], j ∈[0,m], yt
ij ≤ xt

j (11)

∀i ∈ [0, n],
m∑

j=0

yt
ij = 1 (12)

m∑

i=0

xt
i = k (13)

∀j ∈ [0,m],αt
j < μj (14)

∀i ∈ [0, n],Di < γ (15)

where constraint (9)–(11) ensure that each switch can have at most one controller
placed on it, and each flow is assigned to exactly one node where a controller
is placed. Constraint (12) guarantees a flow is assigned to only one controller.
Constraint (13) specifies the total number of controllers in the system. Con-
straint (14) ensures that the arrival rate of flow requests should be less than the
processing rate of the controller. Lastly, constraint (15) takes into account the
delay bound for a flow request.

It can be demonstrated that the above problem is a generalization of the well-
studied p-median problem [22] which is NP-hard by setting the flow-setup delay
bound and controller processing capacity to infinite and setting the queuing delay
and the processing delay to zero. As a result, direct utilization of mathematical
programming solvers such as CPLEX [23] can be computationally expensive. To
address this, we propose an approximation algorithm as an alternative approach.

4 Controller Placement and Flow Assignment

The decisions regarding controller placement and flow allocation are interdepen-
dent in this problem. To address this interdependency, we propose a two-stage
algorithm. In the first stage, we optimize controller placement by traffic segmen-
tation. This helps in effectively distributing the controllers across the network.
In the second stage, we combine hop-count and controller request queue length
considerations to assign flows to controllers. This approach ensures that flows
are assigned to controllers in a way that reduces both communication delay and
queuing delay. By dividing the optimization process into these two stages, we
can achieve an efficient and effective solution for both controller placement and
flow assignment.

4.1 Controller Placement

The placement of controllers should consider the traffic distribution across the
network. In our algorithm design 1, we utilize the traffic distribution to divide
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Algorithm 1. Algorithm for Controller Placement
Input: Network topology G, Flow set F , Number of controllers k
Output: Controller placement scheme P
1: P ← ∅
2: for i = 1 to k do
3: a ← a random node of G.nodes
4: Start breadth first search from a to get a largest subgraph g, the sum of flows

in the subgraph ≤ |F |
k

5: G ← G − g
6: a ←node with the highest degree in g
7: P.add(a)
8: end for

the network, employing a breadth-first traversal approach to partition the graph
into traffic slices. Each traffic slice aims to have a total traffic load of nodes that
is close to the average load of the controllers. The controller is then placed at
the node with the highest degree in the traffic slice.

Although not all flow requests from switches in the traffic slice may be
assigned to the controller placed within that specific slice during the final flow
assignment, this approach leads to a more evenly distributed traffic slicing in the
network. As a result, the traffic load around each controller’s placement location
becomes nearly balanced, reducing the likelihood of high queuing delays for flow
requests.

Furthermore, this approach helps prevent excessive controller placement in
one particular area. If too many controllers are placed in a concentrated area,
some controllers may remain idle while others become heavily overloaded. This
resource waste can be avoided by distributing controllers evenly across different
areas, ensuring that flow request queues are not backlogged and controllers can
respond promptly to incoming requests.

4.2 Flow Assignment

When considering the assignment of a flow request, the optimal choice is to select
the controller with the lowest response delay. Controllers that are closer to the
switch that sends the flow request have shorter propagation delays between them.
Additionally, assigning flow requests to more idle controllers helps minimize the
delays in the flow request queues.

Our assignment algorithm 2 is based on a greedy strategy. It operates by
assigning flow requests in a layer-by-layer manner, starting from the nodes where
the controllers are placed. Each switch’s flow requests are assigned based on the
number of hops between the switch and the controllers and request queue length
of the controllers. Specifically, for each flow request originating from a switch,
we choose the controller with the smallest number of hops from that switch. If
there are multiple controllers with the same number of hops, we prioritize the
most idle controller for assignment.
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Algorithm 2. Algorithm for Flow Assignment
Input: Network topology G, Controller placement scheme P
Output: Flow assignment Scheme
1: q ← P
2: l = 0
3: for all n ∈ G do
4: n.S ← ∅
5: end for
6: while q �= ∅ do
7: for i = 1 to q.size do
8: v ← q.pop()
9: if |v.S| = 1 then

10: assign v’s all flows to the c ∈ v.S
11: else
12: for each flow f of v do
13: c ← the most idle controller in v.S
14: assign f to c
15: end for
16: end if
17: for each neighbour e of v do
18: if e has not been visited then
19: q.put(e)
20: e.S ← v.S
21: e.l ← l + 1
22: else
23: if e.l = l + 1 then
24: e.S ← e.S ∪ v.S
25: end if
26: end if
27: end for
28: end for
29: l ← l + 1
30: end while

By following this approach, we aim to minimize the response delay by select-
ing controllers that are physically close to the requesting switches and have lower
levels of workload. This strategy ensures efficient flow assignment and reduces
the overall delay experienced by flow requests in the network.

5 Experiment and Performance Evaluation

We conduct Python-based simulations to evaluate the performance of the our
scheme. The AttMpls network topology we used in the simulation is from the
Internet topology Zoo [24]. Different parameters and their values are presented in
Table 2. We compare our proposed scheme (CPFA) with two existing schemes:
the Random Greedy algorithm (RG) [4] and Dynamic Controller Assignment
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Table 2. Simulation Parameters

Parameter Value

Number of controllers [2,3,4,5]

Number of flows 10000–30000

Network topology AttMpls [24]

Controller exec.rate 50–150

Delay bound 50–200 ms

Fig. 3. Average controller response time with different number of flows.

(DCA) [20]. In the rest of the paper, we refer to CPFA, RG, and DCA to rep-
resent the proposed scheme, random greedy algorithm, and dynamic controller
assignment scheme, respectively. The RG algorithm calculates the probability of
placing controllers on nodes based on the optimization objective function, and
obtains the corresponding controller-node assignment scheme according to the
calculated set of controllers. On the other hand, DCA assigns flows to controllers
according to preference lists. In contrast, our proposed scheme(CPFA) takes into
account the influence of controller placement, effectively utilizing traffic distri-
bution to partition traffic in the network. It also adopts a more fine-grained flow
assignment method based on the greedy strategy. To evaluate the performance,
we use the following metrics: average control response delay, maximum control
response delay, the percentage of flows with high queuing delay, and the per-
centage of flows that violate the delay constraint. These metrics demonstrate the
effectiveness and superiority of our proposed scheme. The experimental results
are discussed in the following subsections.

5.1 Controller Response Time

We measure the average controller response delay and the maximum controller
response delay for different numbers of flows and controllers. As shown in the
Figs. 3, 4, and 5, our proposed scheme outperforms the existing schemes (RG
and DCA) in terms of controller response delay. When the number of flows in
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Fig. 4. Average controller response time with different number of controllers.

Fig. 5. Maximum controller response time with different number of flows.

the network is 2250, our scheme achieves a 34.0% improvement over DCA and
a 21.6% improvement over RG in terms of average flow-setup delay.

The superiority of our scheme can be attributed to two key factors. Firstly,
our scheme leverages the traffic distribution in the network to determine the
optimized controller locations. This enables more efficient distribution of flow
requests across controllers. In contrast, the DCA scheme does not consider the
impact of controller location on system performance. As a result, it may lead to
a scenario where only a few controllers handle a high traffic load, while other
controllers remain idle. This imbalance reduces the overall working performance
of the control plane, with overloaded controllers experiencing increased response
delay and idle controllers wasting resources. Secondly, our scheme optimizes flow
request assignment based on delay requirements and controller workload. This
approach reduces the likelihood of response time timeouts caused by controller
overload and ensures that flow requests are assigned in a way that helps minimize
queuing delay. In contrast, the existing RG scheme assigns edge nodes to con-
trollers, and each controller handles all the flow requests from the assigned nodes
within a given period. If a controller receives a large number of flow requests from
managed nodes in a short period of time, the queuing delay of flow requests can
significantly increase, resulting in high controller response delay.

Furthermore, it is evident that the controller response delay increases with
an increase in the number of flows and decreases with an increase in the number
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Fig. 6. Percentage of high queueing delay flows with different number of flows.

Fig. 7. Percentage of delay constraint violated flows with different number of flows.

of controllers from Figs. 3, 4, and 5. This relationship can be attributed to the
fact that a higher number of flows results in a single controller handling a larger
volume of flow requests, leading to increased queuing delay and, consequently,
higher controller response delay. On the other hand, deploying a larger number
of controllers in the network reduces the average number of flow requests that
each controller needs to handle. This allows for more efficient assignment of
flow requests to controllers with lower propagation delay and higher levels of
idleness within the network. As a result, the controller response delay is reduced.
Surprisingly, when the number of controllers changes from 3 to 4, the average
response delay of DCA increased as shown in Fig. 4. We investigate the reason
and find that it is due to the DCA algorithm randomly generating a terrible
controller plane layout when the number of controllers is 4.
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Fig. 8. Algorithm execution time with different number of flows.

5.2 High Queuing Delay Flows

We also conduct an experiment to measure the percentage of flows experiencing
high queuing delay, and the results demonstrated that our scheme outperforms
RG and DCA. RG is a static assignment scheme that assigns all flow requests
from an edge node to its designated controller. However, when the number of flow
requests from an edge node increases significantly within a time slot, it leads to
a backlog of flow requests in the controller’s request processing queue, resulting
in high queuing delays. On the other hand, DCA does not take into account the
placement of controllers in the network. It is influenced by the convergence of
transmission delay and queuing delay while maintaining the preference list of
flows. This may result in higher priority in the priority queue of controllers with
relatively high queuing delay due to low propagation delay, leading to increased
delays in request queuing (Fig. 6).

In contrast, our scheme is based on dynamic flow assignment. After opti-
mizing controller placement, for controllers with close transmission delays, we
prioritize selecting relatively idle controllers to process requests. This approach
reduces the queuing time of flow requests and enhances the efficiency of the
controller plane.

5.3 Folw-Setup Delay Constraint Violated Flows

We also measure the percentage of flows in the network that violated the flow-
setup delay constraint. The results clearly demonstrate that our proposed scheme
outperforms the existing schemes RG and DCA in this aspect. Our proposed
scheme takes the constraints of both the controller response delay and the flow
delay bound into consideration. By incorporating these constraints, we are able
to ensure that a larger number of flows receive responses with low delays, within
the specified constraints. Consequently, only a small number of flows exceed the
setup delay bound (Fig. 7).
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In contrast, the RG scheme does not consider the delay bound, and its node-
based assignment method is more prone to overlooking the controller response
delay of individual flows. As a result, some flow requests end up queuing for
extended periods in the request queues of certain controllers, leading to high
controller response delays for those flows. Consequently, these flows are more
likely to violate the flow-setup delay bound. Although DCA takes the flow-
setup delay bound into account, it lacks a decision-making process for controller
placement. As a result, random placement of controllers can potentially lead to
an inefficient layout of the controller plane in the network. This can result in a
significant number of flow requests requiring relatively high propagation delays
during processing, leading to a substantial increase in the percentage of flows
that violate the flow-setup delay bound.

Furthermore, it is worth noting that the percentage of flows violating the flow-
setup delay threshold increases with the number of flows, while the RG scheme
decreases at 1250 due to the randomness of the algorithm. This is because as the
number of flows increases, the controller response delay also tends to increase.
Consequently, more flows exceed the specified delay bound.

5.4 Algorithm Execution Time

We also compare the execution time of the algorithms, and the results indicate
that our algorithm achieves a more efficient execution process by optimizing the
algorithm design and considering the specific requirements of the problem. This
observation is also supported by the theoretical analysis of the algorithm. Our
algorithm is based on traversal and greedy strategies, which has a linear com-
plexity. In contrast, DCA involves calculating preference lists for controllers and
performing bidirectional matching for flow requests, resulting in higher compu-
tational complexity. The number of iterations of the RG algorithm depends on
the number of nodes that can play the role host for a controller, and in each
iteration, the optimal assignment strategy under the current placement strategy
needs to be calculated, resulting in relatively high algorithm complexity (Fig. 8).

6 Conclusion

To enhance the programmability and scalability of edge networks, multiple con-
trollers need to be placed in the network to effectively manage the network
traffic in the data plane. Well-placed controllers in the network and fine-grained
assignment of flows to controllers can effectively shorten flow-setup delay in the
network, thereby improving network performance. In this paper, we consider
the problem of controller placement and flow assignment in edge networks. To
address the issue of high controller response delay caused by excessively long
request queues of some controllers, we propose a controller placement and fine-
grained flow assignment scheme based on traffic segmentation, with the objective
of minimizing the average flow setup delay in the network. The evaluation results
show that compared with existing solutions, our proposed scheme has better



Joint Controller Placement and Flow Assignment 37

performance in controller response time, percentage of high queuing delay flows,
percentage of flow-setup delay constraint violated flows, and algorithm execution
time.

References

1. Shi, W., Cao, J., Zhang, Q., Li, Y., Xu, L.: Edge computing: vision and challenges.
IEEE Internet Things J. 3(5), 637–646 (2016). https://doi.org/10.1109/JIOT.2016.
2579198

2. Zeng, Y., Guo, S., Liu, G.: Comprehensive link sharing avoidance and switch aggre-
gation for software-defined data center networks. Futur. Gener. Comput. Syst. 91,
25–36 (2019)

3. Li, P., Liu, G., Guo, S., Zeng, Y.: Traffic-aware efficient consistency update in
NFV-enabled software defined networking. Comput. Netw. 228, 109755 (2023)

4. Qin, Q., Poularakis, K., Iosifidis, G., Tassiulas, L.: SDN controller placement at
the edge: optimizing delay and overheads. In: IEEE Conference on Computer Com-
munications (IEEE INFOCOM 2018), pp. 684–692. IEEE (2018)

5. Zeng, Y., Guo, S., Liu, G., Li, P., Yang, Y.: Energy-efficient device activation, rule
installation and data transmission in software defined DCNs. IEEE Trans. Cloud
Comput. 10(1), 396–410 (2019)

6. Zeng, Y., et al.: Mobility-aware proactive flow setup in software-defined mobile
edge networks. IEEE Trans. Commun. 71(3), 1549–1563 (2023)

7. Li, P., Guo, S., Pan, C., Yang, L., Liu, G., Zeng, Y.: Fast congestion-free consistent
flow forwarding rules update in software defined networking. Future Gen. Comput.
Syst. 97, 743–754 (2019)

8. Sun, P., Guo, Z., Wang, G., Lan, J., Hu, Y.: Marvel: enabling controller load
balancing in software-defined networks with multi-agent reinforcement learning.
Comput. Netw. 177, 107230 (2020)

9. Huang, X., Bian, S., Shao, Z., Hong, X.: Predictive switch-controller association
and control devolution for SDN systems. IEEE/ACM Trans. Netw. 28(6), 2783–
2796 (2020)

10. Heller, B., Sherwood, R., McKeown, N.: The controller placement problem. ACM
SIGCOMM Comput. Commun. Rev. 42(4), 473–478 (2012)

11. Guo, Z., Chen, W., Liu, Y.-F.., Yang, X., Zhang, Z.-L.: Joint switch upgrade and
controller deployment in hybrid software-defined networks. IEEE J. Select. Areas
Commun. 37(5), 1012–1028 (2019)

12. Wu, Y., Zhou, S., Wei, Y., Leng, S.: Deep reinforcement learning for controller
placement in software defined network. In: IEEE Conference on Computer Com-
munications Workshops (INFOCOM WKSHPS 2020), pp. 1254–1259. IEEE (2020)

13. Basu, D., Jain, A., Ghosh, U., Datta, R.: A reverse path-flow mechanism for latency
aware controller placement in VSDN enabled 5G network. IEEE Trans. Indust. Inf.
17(10), 6885–6893 (2020)

14. El Hocine, B., Outtagarts, A., Langar, R., Boutaba, R.: Dynamic clustering of soft-
ware defined network switches and controller placement using deep reinforcement
learning. Comput. Netw. 207, 108852 (2022)

15. Chen, L., Tang, F., Li, X.: Mobility-and load-adaptive controller placement and
assignment in LEO satellite networks. In: IEEE Conference on Computer Commu-
nications (IEEE INFOCOM 2021), pp. 1–10. IEEE (2021)

https://doi.org/10.1109/JIOT.2016.2579198
https://doi.org/10.1109/JIOT.2016.2579198


38 S. Hua et al.

16. Li, B., Deng, X., Deng, Y.: Mobile-edge computing-based delay minimization con-
troller placement in SDN-IOV. Comput. Netw. 193, 108049 (2021)

17. Li, Y., Zeng, D., Chen, L., Gu, L., Ma, W., Gao, F.: Cost efficient service mesh
controller placement for edge native computing. In: 2022 IEEE Global Communi-
cations Conference (GLOBECOM 2022), pp. 1368–1372. IEEE (2022)

18. Soleymanifar, R., Beck, A.S.C., Salapaka, S.: A clustering approach to edge
controller placement in software-defined networks with cost balancing. IFAC-
PapersOnLine 53(2), 2642–2647 (2020)

19. Xie, J., Guo, D., Li, X., Shen, Y., Jiang, X.: Cutting long-tail latency of routing
response in software defined networks. IEEE J. Sel. Areas Commun. 36(3), 384–396
(2018)

20. Bera, S., Misra, S., Saha, N.: Traffic-aware dynamic controller assignment in SDN.
IEEE Trans. Commun. 68(7), 4375–4382 (2020)

21. Dijkstra, E.W., et al.: A note on two problems in connexion with graphs. Numer.
Math. 1(1), 269–271 (1959)

22. Daskin, M.S., Maass, K.L.: The p-median problem. In: Laporte, G., Nickel, S.,
Saldanha da Gama, F. (eds.) Location Science, pp. 21–45. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-13111-5 2

23. IBM ILOG. Cplex optimizer. En ligne (2012). http://www-01ibm.com/software/
commerce/optimization/cplex-optimizer

24. Knight, S., Nguyen, H.X., Falkner, N., Bowden, R., Roughan, M.: The internet
topology zoo. IEEE J. Select. Areas Commun. 29(9), 1765–1775 (2011)

https://doi.org/10.1007/978-3-319-13111-5_2
http://www-01ibm.com/software/commerce/optimization/cplex-optimizer
http://www-01ibm.com/software/commerce/optimization/cplex-optimizer

	 Preface
	 Organization
	 Contents – Part V
	EQFF: An Efficient Query Method Using Feature Fingerprints
	1 Introduction
	2 Related Work
	2.1 Privacy of Bloom Filters
	2.2 Fuzzy Query

	3 System Overview
	4 Construction of Data Feature Fingerprints
	4.1 Construction and Chunking of Data Feature Fingerprints
	4.2 Fingerprint Compression Storage Algorithm

	5 Precise Query Library and Rapid Query
	5.1 Acceleration Algorithm Based on Inverted Index Library
	5.2 Precise Query Algorithm Based on Bloom Filter

	6 Fuzzy Query and Similarity Measurement
	6.1 Similarity Measurement Based on Counting Bloom Filters
	6.2 Search Algorithm Acceleration Using Parallel Computing

	7 Evaluation
	7.1 Experimental Settings and Dataset
	7.2 Storage Overhead and Parameter Selection for Feature Fingerprints
	7.3 Performance for Precise Query
	7.4 Performance for Fuzzy Query

	8 Conclusion
	References

	Joint Controller Placement and Flow Assignment in Software-Defined Edge Networks
	1 Introduction
	2 Related Work
	2.1 Assignment Schemes
	2.2 Placement and Assignment Schemes
	2.3 Placement and Assignment Schemes in SDN-Enabled Edge Network

	3 System Model and Problem Formulation
	3.1 System Model
	3.2 Flow-Setup Delay Model
	3.3 Problem Formulation

	4 Controller Placement and Flow Assignment
	4.1 Controller Placement
	4.2 Flow Assignment

	5 Experiment and Performance Evaluation
	5.1 Controller Response Time
	5.2 High Queuing Delay Flows
	5.3 Folw-Setup Delay Constraint Violated Flows
	5.4 Algorithm Execution Time

	6 Conclusion
	References

	Distributed Latency-Efficient Beaconing for Multi-channel Asynchronous Duty-Cycled IoT Networks
	1 Introduction
	2 Related Works
	3 Problem Definition
	4 Distributed Latency-Efficient Scheduling Algorithm
	4.1 Special Structures for Collision Avoidance
	4.2 Computing Candidate Node Transmission Schedule
	4.3 The Distributed Beaconing Schedule Algorithm

	5 Performance Analysis
	6 Simulation Results
	6.1 Performance Comparison in Single-channel Duty-Cycled Scenarios
	6.2 Performance Analysis in Multi-channel Duty-Cycled Scenarios

	7 Conclusions
	References

	Improved Task Allocation in Mobile Crowd Sensing Based on Mobility Prediction and Multi-objective Optimization
	1 Introduction
	2 Related Work
	3 System Overview and Problem Formulation
	3.1 System Overview
	3.2 Problem Formulation
	3.3 Hardness Analysis of M3P Problem

	4 Fuzzy Control System
	4.1 Fuzzy Set and Membership Function
	4.2 Fuzzy Inference Engine
	4.3 COG Defuzzification

	5 Task Allocation Algorithm
	5.1 Most Possible First Algorithm
	5.2 Improved NSGA-II Algorithm

	6 Evaluation
	6.1 Dataset
	6.2 Baselines
	6.3 Performance of Mobility Prediction
	6.4 Performance of Task Allocation

	7 Conclusion
	References

	SMCoEdge: Simultaneous Multi-server Offloading for Collaborative Mobile Edge Computing
	1 Introduction
	2 Related Work
	2.1 Edge-Cloud Collaboration
	2.2 Edge-Edge Collaboration

	3 System Model and Problem Formulation
	3.1 System Model
	3.2 Problem Formulation

	4 Proposed Approach
	4.1 SMCoEdge Framework
	4.2 Improved DQN for Multi-ES Selection
	4.3 Closed-Form Solution for Task Allocation
	4.4 DRL-SMO Algorithm

	5 Performance Evaluation
	5.1 Setting
	5.2 Baselines
	5.3 Results

	6 Conclusions
	References

	Image Inpainting Forensics Algorithm Based on Dual-Domain Encoder-Decoder Network
	1 Introduction
	2 Related Works
	2.1 Image Inpainting Forensics
	2.2 Attention Mechanism

	3 Proposed Method
	3.1 S-Encoder
	3.2 F-Encoder
	3.3 CMAF
	3.4 Attention-Gated Decoder Network
	3.5 Loss Function

	4 Experiment
	4.1 Experimental Setup
	4.2 Comparing with Previous Methods
	4.3 Abation Study
	4.4 Robustness Evaluation

	5 Conclusions
	References

	Robust Medical Data Sharing System Based on Blockchain and Threshold Rroxy Re-encryption
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Blockchain
	3.2 Threshold Proxy Re-encryption

	4 BMDSS Model
	4.1 System Model
	4.2 Application

	5 System Evaluation
	5.1 Environment
	5.2 Data Storage Performance
	5.3 Data Sharing Performance
	5.4 Security Analysis

	6 Conclusion
	References

	FRAIM: A Feature Importance-Aware Incentive Mechanism for Vertical Federated Learning
	1 Introduction
	2 Related Work
	2.1 Federated Learning
	2.2 Incentive Mechanism of Federated Learning

	3 System Model and Problem Definition
	3.1 Vertical Federated Learning
	3.2 System Model
	3.3 Problem Definition

	4 Incentive Mechanism Design of Vertical Federated Learning
	4.1 Data Synthesis and Feature Importance Estimation
	4.2 Design of FRAIM
	4.3 Theoretical Analysis

	5 Experimental Evaluation
	5.1 Experiment Setup
	5.2 Performance on Three Datasets
	5.3 Performance with Different Budgets

	6 Conclusion
	References

	A Multi-objective Method for Energy-Efficient UAV Data Collection Communications
	1 Introduction
	2 Models and Preliminaries
	2.1 System Model
	2.2 Network Model
	2.3 Energy Consumption Model of the UAV

	3 Problem Formulation and Analysis
	3.1 Problem Statement
	3.2 Optimization Objectives

	4 Algorithm
	4.1 Conventional MOGOA
	4.2 EMOGOA

	5 Simulation Results and Analysis
	5.1 Simulation Setups
	5.2 Simulation Results

	6 Conclusion
	References

	Black-Box Graph Backdoor Defense
	1 Introduction
	2 Related Work
	2.1 Graph Neural Network Backdoor
	2.2 Black Box Backdoor Defenses

	3 Methodology
	3.1 Defense Assumptions and Goals
	3.2 Key Intuition
	3.3 BloGBaD

	4 Experiment
	4.1 Experiment Settings
	4.2 Evaluation Metrics
	4.3 GTA Defense
	4.4 GBA Defense

	5 Conclusion
	References

	DRL-Based Optimization Algorithm for Wireless Powered IoT Network
	1 Introduction
	2 Related Work
	2.1 Binary Offloading
	2.2 Partial Offloading

	3 System Model and Problem Formulation
	3.1 System Model
	3.2 Local Computing Mode
	3.3 Edge Computing Mode
	3.4 Problem Formulation

	4 Deep-Reinforcement-Learning-Based Offloading Algorithm
	4.1 Deep-Reinforcement-Learning-Based Method for Solving Top-Problem
	4.2 Mixed Optimization Method for Solving Sub-problem

	5 Numerical Results
	5.1 Convergence Performance
	5.2 Influence of Different Parameters on Result
	5.3 Numerical Evaluation

	6 Conclusion
	References

	Efficiently Running SpMV on Multi-core DSPs for Banded Matrix
	1 Introduction
	2 Background
	2.1 FT-M7032 Heterogeneous Processor
	2.2 Sparse Matrix Storage Format
	2.3 Banded Matrix

	3 Our Approach
	3.1 Architecture Analysis
	3.2 SpMV_Band Design and Implementation

	4 Performance Results
	4.1 Experimental Setup
	4.2 Performance Evaluation

	5 Related Work
	6 Conclusion
	References

	SR-KGELS: Social Recommendation Based on Knowledge Graph Embedding Method and Long-Short-Term Representation
	1 Introduction
	2 Related Work
	3 Problem Definition
	4 The Proposed Model
	4.1 Embedding Layer and Input Data Pre-processing
	4.2 User Modeling
	4.3 Item Modeling
	4.4 Relative Location Difference Modeling
	4.5 Model Training

	5 Experiments
	5.1 Experimental Settings
	5.2 Comparative Results
	5.3 Ablation Study
	5.4 Analysis of Parameters

	6 Conclusion
	References

	CMMR: A Composite Multidimensional Models Robustness Evaluation Framework for Deep Learning
	1 Introduction
	2 Attacks, Defense, and Metrics
	2.1 Attack Methods
	2.2 Defense Methods
	2.3 Comparison Metrics

	3 Composite Multidimensional Model Robust Evaluation Method
	3.1 Motivation
	3.2 CMMR Framework

	4 Experimental Analysis for CMMR
	4.1 3-Dimension Models Robustness Evaluation.
	4.2 Evaluating the Robustness of Two Sets of Models by CMMR

	5 Conclusion
	References

	Efficient Black-Box Adversarial Attacks with Training Surrogate Models Towards Speaker Recognition Systems
	1 Introduction
	2 Related Work
	2.1 White-Box and Gray-Box Attacks
	2.2 Black-Box Attacks

	3 Methodology
	3.1 Problem Description
	3.2 The Proposed Framework
	3.3 Surrogate Models
	3.4 The Training of Surrogate Model
	3.5 Adversarial Examples Generation

	4 Experiments
	4.1 Experimental Settings
	4.2 Transferability Analysis
	4.3 Frequency Analysis
	4.4 Performance Comparison

	5 Discussion of Potential Defenses
	6 Conclusions and Future Work
	References

	SW-LeNet: Implementation and Optimization of LeNet-1 Algorithm on Sunway Bluelight II Supercomputer
	1 Introduction
	2 Related Work
	2.1 Convolutional Neural Network
	2.2 The Works Based on the Sunway Supercomputers

	3 The Sunway Bluelight II Supercomputer and LeNet-1
	3.1 The Architecture of the Sunway Bluelight II Supercomputer
	3.2 The Architecture of LeNet-1
	3.3 Serial Execution Mode of LeNet-1

	4 SW-LeNet - Parallel Optimization of LeNet-1 on the Sunway Bluelight II Supercomputer
	4.1 Thread-Level Optimization
	4.2 Process-Level Optimization

	5 Evaluation
	5.1 The Performance of Thread-Level Optimization
	5.2 The Performance of Process-Level Optimization
	5.3 The Performance of SW-LeNet
	5.4 Scaling

	6 Conclusion
	References

	Multi-label Detection Method for Smart Contract Vulnerabilities Based on Expert Knowledge and Pre-training Technology
	1 Introduction
	2 Related Work
	3 Multi-label Detection Method for Smart Contract Vulnerability Based on Expert Knowledge and Pre-training Model
	3.1 Smart Contract Vulnerability Analysis and Expert Knowledge
	3.2 Overview of Multi-label Detection Methods for Smart Contract Vulnerabilities Based on Expert Knowledge and Pre-training Model
	3.3 Single Label Classification Based on Pre-training Technology and Expert Mode Assisted Slicing
	3.4 Multi-label Classification of Core Slices and Bi-LSTM Based on Expert Knowledge

	4 Experiments and Analysis of Results
	4.1 Dataset
	4.2 Evaluation Indicators
	4.3 Compare Experimental Results

	5 Summary and Future Works
	References

	PM-Migration: A Page Placement Mechanism for Real-Time Systems with Hybrid Memory Architecture
	1 Introduction
	2 Background and Related Work
	2.1 Performance Characteristics of the Hybrid Memory Architecture with NUMA
	2.2 Page Placement Mechanisms for the Hybrid Memory Architecture

	3 Design
	3.1 Overview
	3.2 Page Placement Strategy
	3.3 Transmission Handover Strategy

	4 Implementation
	4.1 Using Different Transmission Modes to Complete Page Migration
	4.2 Supporting Awareness of Huge Pages and THPs

	5 Evaluation
	5.1 Experimental Setup
	5.2 Throughput Under CPU Contention-Free and High CPU Contentions

	6 Conclusion
	References

	Explaining Federated Learning Through Concepts in Image Classification
	1 Introduction
	2 Related Works
	2.1 Federated Learning
	2.2 Explainable AI
	2.3 Bottleneck Concept Learner

	3 Federated Concept Learning
	3.1 Federated Learning
	3.2 Bottleneck Concept Learner

	4 Results
	4.1 Experiments Settings
	4.2 Classification Performance
	4.3 Robustness
	4.4 Interpretability

	5 Conclusion
	References

	FEAML: A Mobile Traffic Classification System with Feature Expansion and Autonomous Machine Learning
	1 Introduction
	2 Related Work
	2.1 Machine Learning Based Mobile TC
	2.2 State-of-the-Art Deep Learning-Based TC

	3 System Architecture
	3.1 Data Pre-processing
	3.2 Feature Extension
	3.3 Classification

	4 Feature Extension
	5 Implementation and Evaluation
	5.1 Implementation
	5.2 Dataset Description
	5.3 Data Preprocessing
	5.4 Evaluation Metrics
	5.5 Feature Extension Results
	5.6 Mobile Application TC Results
	5.7 Importance of Features

	6 Conclusions
	References

	Task Offloading and Resource Allocation for Edge-Cloud Collaborative Computing
	1 Introduction
	2 Related Work
	3 System Models
	3.1 Local Computing Model
	3.2 Edge-Cloud Collaborative Computing
	3.3 Communication Model

	4 Problem Formulation
	4.1 Resource Allocation
	4.2 Optimal Offloading Decision

	5 Simulation Results
	6 Conclusion
	References

	SW-TRRM: Parallel Optimization Research of the Random Ray Method Based on Sunway Bluelight II Supercomputer
	1 Introduction
	2 The Random Ray Method and Sunway Bluelight II Supercomputer
	2.1 The Random Ray Method
	2.2 The Sunway Bluelight II Supercomputer

	3 Thread-Level Parallel Optimization of SW-TRRM
	3.1 Direct Parallelization
	3.2 Parallelization by Energy Groups
	3.3 Loop Structure Optimization

	4 Process-Level Parallel Optimization of SW-TRRM
	4.1 Domain Replication
	4.2 Optimizing the Communication Across Super-Nodes

	5 Evaluation
	5.1 Configuration
	5.2 Performance with Various Parallelizations
	5.3 Scalability

	6 Related Work
	7 Conclusion
	References

	An Empirical Study of Memory Pool Based Allocation and Reuse in CUDA Graph
	1 Introduction
	2 Background
	2.1 Decoupling Address and Memory
	2.2 Implicit Device Synchronization
	2.3 Pool Based Asynchronous Malloc

	3 Key Issues in Memory Reuse
	3.1 Impact of Allocation Size
	3.2 Impact of Synchronization and Release Threshold
	3.3 Impact of Memory Free and Trim
	3.4 Graph Memory Reuse in CUDA
	3.5 Impact of Address Remapping

	4 Conclusion
	References

	Log Anomaly Detection Based on Semantic Features and Topic Features
	1 Introduction
	2 Related Work
	2.1 Log Parsing
	2.2 Anomaly Detection

	3 Method
	3.1 Multi-information Fused Log Sequences Construction
	3.2 Log Semantic Extraction
	3.3 Log Topic Feature Extraction
	3.4 Anomaly Detection with Improved TCN

	4 Experiment
	4.1 Experimental Design
	4.2 Analysis of Anomaly Detection Results
	4.3 Analysis of Topic Features
	4.4 Analysis of Improved TCN
	4.5 Discussion

	5 Conclusion
	References

	Popularity Cuckoo Filter: Always Keeping Popular Items in Mind
	1 Introduction
	2 An Overview of Cuckoo Filter
	3 Popularity Cuckoo Filter
	3.1 Insert
	3.2 Lookup
	3.3 Delete
	3.4 Theoretical Analysis
	3.5 Potential Improvement

	4 Experiment
	5 Conclusions
	References

	Solving Client Dropout in Federated Learning via Client Similarity Discovery and Gradient Supplementation Mechanism
	1 Introduction
	2 Related Work
	3 MPSDGS Algorithm
	4 Experiment
	4.1 Datasets
	4.2 Model Architecture
	4.3 Baselines
	4.4 Performance Comparison
	4.5 Ablation Experiment

	5 Conclusion
	References

	A KPIs-Based Reliability Measuring Method for Service System
	1 Introduction
	2 Related Work
	2.1 Deep Learning Programme
	2.2 Statistical Programme

	3 Method
	3.1 Method Framework
	3.2 Reliability Measurement Model Focal - Light GBM
	3.3 Feature Selection of KPIs
	3.4 Construction of Reliability Measurement Model Based on Focal - LightGBM
	3.5 Model Hyperparameter Tuning Based on Evolution Strategy

	4 Experiment
	4.1 Feature Selection Based on Cross Window and GMM
	4.2 Hyperparameter Tuning Based on Climbing Evolutionary Strategy
	4.3 Reliability Measurement Performance Evaluation

	5 Conclusion
	References

	A Seasonal Decomposition-Based Hybrid-BHPSF Model for Electricity Consumption Forecasting
	1 Introduction
	2 Dataset
	3 Proposed Model
	3.1 The BHPSF Algorithm
	3.2 The Hybrid-BHPSF Model

	4 Experiments
	4.1 Data Description
	4.2 Quality Measures
	4.3 Analysis of BHPSF Results
	4.4 Analysis of Hybrid-BHPSF Results
	4.5 Multi-step Ahead Prediction

	5 Conclusion
	References

	An Improved Model of PBFT with Anonymity and Proxy Based on Linkable Ring Signature
	1 Introduction
	2 Preliminaries
	2.1 PBFT
	2.2 Linkable Ring Signature
	2.3 ECDSA Signature

	3 An Improved Model of PBFT with Anonymity and Proxy
	3.1 Proxy Node Selection
	3.2 Pre-Prepare
	3.3 Prepare
	3.4 Commit
	3.5 Functionality Comparison

	4 Security Analysis
	4.1 Unforgeability
	4.2 Anonymity
	4.3 Linkability

	5 Efficiency Analysis
	6 Conclusion
	References

	Author Index

