
Future Generation Computer Systems 97 (2019) 743–754

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Fast congestion-free consistent flow forwarding rules update in
software defined networking
Pan Li a, Songtao Guo b,a,∗, Chengsheng Pan c,∗∗, Li Yang c, Guiyan Liu a, Yue Zeng a

a Chongqing Key Laboratory of Nonlinear Circuits and Intelligent Information Processing, College of Electronic and Information Engineering,
Southwest University, Chongqing, 400715, China
b College of Computer Science, Chongiqng University, Chongqing, 400044, China
c College of Information Engineering, Dalian University, Dalian, 116622, China

h i g h l i g h t s
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a b s t r a c t

In software defined networking (SDN), flow migration will be required when topology changes to
improve network performance such as load balancing. However, black holes, loops and transient
congestion may occur during flow migration due to the asynchronous update of switches on the data
plane. Therefore, in this paper, we propose a novel segmented update method to shorten the time of
rules update, and a novel transient congestion avoidance algorithm to minimize the number of delayed
updating flows, which can both reduce update time of flows. Specifically, we construct three novel
models to guarantee no black holes, no loops and no transient congestion, respectively. The first two
models to avoid black holes and loops can update multiple nodes in each segment instead of updating
the nodes one by one like Cupid. The third model to avoid transient congestion minimizes the number
of delayed updating flows. Subsequently, three novel black holes avoidance algorithm, loops avoidance
algorithm and congestion avoidance algorithm are respectively proposed. Furthermore, we propose a
novel rules update (RU) algorithm which combines these three algorithms to update the rules to avoid
black holes, loops and transient congestion simultaneously. Simulation results show that our scheme
can increase the number of directly updated flows by 75% on a single congestion link and reduce the
rules update time of the flows by 34% compared with the existing work.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Software defined networking (SDN) composed of both control
plane and data plane achieves the forwarding of packets accord-
ing to the rules installed in the flow tables in the switches [1].
In SDN, a logically centralized controller in the control plane
has a global view of the network state and is responsible for
instructing the switches on the data plane to add, modify, or
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delete rules in their flow tables. Due to the flexibility of SDN
in network management, it brings tremendous advantages to
various networks [2]. For example, many studies have proved
that SDN can improve link utilization [3–6] and reduce energy
consumption [7–10].

In SDN, although the control plane is centralized, the data
plane is still a distributed system. When traffic or network topol-
ogy changes, the controller needs to recalculate paths for flows
to optimize network performance. During flow migration, the
update of flow forwarding rules in the data plane may be incon-
sistent due to asynchronous update in switches. The inconsistent
update can cause black holes (i.e., a switch has no rule to forward
a packet when the packet arrives at the switch), loops, and
transient congestion (i.e., the new flows move into the link before
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the original flows are moved out the link, and the total traffic on
the link exceeds the link capacity) during flow migration [11,12].
Unfortunately, the occurrence of black holes, loops, and tran-
sient congestion can cause temporary interruption of flows and
reduction of throughput.

Currently, many methods have been proposed to avoid black
holes and loops, such as two-phase update [13], time-triggered
update [14,15], reverse order update [16], the update of combined
with rule replacement and addition [12,17,18], and segmentation
reverse order update [19]. Meanwhile, there are also some ways
to avoid transient congestion, such as introducing intermediate
stages [5,20,21], building rule update dependency graphs [2,19]
and time triggering [22,23]. But almost all previous works [2,
5,12–18,20,21] either focused on how to avoid black holes and
loops, or on how to avoid transient congestion. In [19], the Cupid
algorithm is designed to avoid black holes, loops, and transient
congestion simultaneously. However, the algorithm consumes a
lot of time to avoid black holes and loops by segmentation reverse
order update. Besides, it generates considerable cost to avoid
transient congestion by delaying the update of all flows that are
moved into potential congestion links.

Therefore, in this paper, we propose a novel rules update (RU)
algorithm consisting of black holes avoidance algorithm, loops
avoidance algorithm and congestion avoidance algorithm, which
reduces the time consumed for rules update while avoiding black
holes, loops, and transient congestion simultaneously. Specifi-
cally, we first identify the segmented nodes which control the
flow to switch paths and then divide the new path of each flow
into several segments based on the segmented nodes. To avoid
black holes and loops during updating, we first update the nodes
except the segmented nodes in each segment simultaneously and
then update the segmented nodes. To avoid transient congestion
during updating, we minimize the number of delayed updating
flows and then build a dependency graph with potential con-
gestion links. Therefore, the RU algorithm reduces the search
overhead of the rule update dependency graph and the queue
length of the rule update compare with the Cupid algorithm [19],
thereby reducing the time taken to update the rules.

The main contributions of this paper are as follows:

• We analyze how to avoid black holes, loops and transient
congestion, and build three corresponding avoidance mod-
els. The first two models to avoid black holes and loops can
update multiple nodes in each segment instead of updating
the nodes one by one like Cupid [19]. The third model to
avoid transient congestion minimizes the number of delayed
updating flows.

• We propose the black holes avoidance algorithm, loops
avoidance algorithm and congestion avoidance algorithm to
guarantee no black holes, no loops and no transient con-
gestion during the rules update of flows, respectively. These
three algorithms greatly reduce the queuing time required
for the rules update of flows. Furthermore, we propose a RU
algorithm that combines these three algorithms to update
the rules to avoid black holes, loops and transient congestion
simultaneously.

• We evaluate our algorithm in DCN and WAN topologies.
Simulation results show that our scheme can increase the
number of directly updated flows by 75% on a single con-
gestion link and reduce the rules update time of the flows
by 34% compared with Cupid [19].

The remainder of this paper is organized as follows. Sec-
tion 2 discusses the related work for routing updates in SDN and

Section 3 introduces the motivation of our work. Then, Section 4
describes how to avoid black holes and loops during rules update,
and Section 5 details how to avoid transient congestion during
rules update. And in Section 6, we introduce a heuristic algorithm
that simultaneously avoids black holes, loops, and transient con-
gestion. Finally, we evaluate our methods and compare them with
other existing methods in Section 7 and Section 8 concludes this
paper.

2. Related work

In this section, we will review the previous methods of net-
work routing updating in SDN and divide these methods into two
parts based on their concerns: how to avoid black holes and loops
during flow migration and how to avoid transient congestion
during flow migration due to asynchronous update of switches
in the SDN data plane.

On the one hand, some of the research works [12–19,24–
26] focused on how to avoid black holes and loops during flow
migration. Reitblatt et al. [13] proposed a two-phase commit
protocol to update the rules, which avoids black holes and loops,
but this approach increases TCAM overhead. Thus, several update
methods were proposed to reduce the overhead of TCAM, such
as the reverse order update method [16], the time triggered
method [14,15] and the rule redundancy reduction method [24].
As an improved version, a method of combining rule replace-
ments and additions is considered to reduce the overhead of the
TCAM and reduce the delay of the reverse order update [12,17,
18]. Based on the reverse order update [16], Cupid [19] proposed
a method of segmentation reverse update to reduce the time
consuming of rule update, and Firster et al. [26] emphasized
the trade-off between the strength of the consistency property
and the dependencies. In addition, Basta et al. [25] studied how
to minimize the number of interactions between switches and
controllers when avoiding loops.

On the other hand, some of the research works [2,5,19–23,27,
28] focused on how to avoid transient congestion during flow
migration. SWAN [5] and zUpdate [20] introduced an interme-
diate stage in WAN and DCN to avoid transient congestion dur-
ing updating. However, these methods require to solve a series
of Linear Programs (LPs) which is time consuming. Therefore,
some update methods were proposed to improve link utiliza-
tion and reduce the time for intermediate state transitions, such
as the congestion-minimizing method [21], the time-triggered
method [22,23] and the dynamic scheduling method [2]. Based on
the dynamic scheduling method [2], Cupid [19] divided the global
rule update dependencies among switches into local restrictions
to reduce the time for rule update, and Luo et al. [27] proposed a
method of calculating the network update plan according to the
user’s requirements. In addition, Xu et al. [28] solved the low-
latency routing update challenge by jointly optimizing routing
and updating scheduling.

Almost all of the previous works either focused on how to
avoid black holes and loops, or on how to avoid transient con-
gestion and the work [19] designed different algorithms to avoid
black holes, loops, and transient congestion simultaneously. How-
ever, since this method increases unnecessary update sequences
and does not consider minimizing the queuing time of all flows, it
may still result in longer routing delays. If the route update delay
is too long, the final routing configuration may be inefficient for
the updated workload [28]. Therefore, we need to propose a more
efficient low-latency update algorithm to avoid black holes, loops,
and transient congestion simultaneously.
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Fig. 1. An example of route update. The link capacity is 1 unit and flow is
labeled with its size. The blue arrow and the red dotted arrow indicate the old
path and the new path of the flow f 1 respectively.

3. Illustrate for rules update

In this section, we will illustrate the concepts of black holes,
loops and transient congestion by giving examples. Then we
introduce the Cupid algorithm how to avoid black holes, loops
and transient congestion.

In SDN, when the topology changes or it needs to balance the
load, the controller will plan new paths for affected flows, that
is, the flows will be migrated from the current paths to the new
paths. However, black holes and loops may occur during flow
migration due to the asynchronous update of switches. As shown
in Fig. 1, there is a flow f 1 with size of 0.5 units, passing the path:
1 → 2 → 3 → 4 → 5 → 6 → 7 → 8. In order to release more
available bandwidth for other flows on link 2 → 3, the controller
recalculates a new path for flow f 1: 1 → 2 → 9 → 10 → 11 →

4 → 5 → 7 → 6 → 8. During the migration of flow f 1, if the
rule in switch 2 is updated but the rule in switch 9 has not been
updated, then the packets sent to switch 9 will be buffered or
even dropped. In this case switch 9 is a black hole. In addition, if
the rule in switch 7 is updated but the rule in switch 6 has not
been updated, then a loop 7 → 6 → 7 may occur.

In order to ensure that there are no black holes and no loops
during flow migration, Cupid [19] divides new path into multiple
segments according to the critical nodes, and then updates the
nodes in each segment by reverse order one by one. As shown in
Fig. 1, in order to avoid black holes and loops during migration,
by Cupid [19] algorithm, the new path of flow f 1 will be divided
into five segments: 1 → 2, 2 → 9 → 10 → 11 → 4, 4 → 5,
5 → 7, 7 → 6 → 8. And then the five segments are updated in
reverse order, for example, in the second segment, nodes 4, 11,
10, 9, and 2 are updated one by one, and need to be updated five
times. Therefore, the time required to update the rules for the
new path of flow f 1 is max{(t1 + t2), (t2 + t9 + t10 + t11 + t4), (t4 +

t5), (t5 + t7), (t7 + t6 + t8)} ms.
However, it is worth noting that as long as the rules in

switches 9, 10, 11 are updated before the rule update in switch 2,
black holes can be avoided during flow f1 migration. And as long
as the rule in switch 6 is updated before the rule update in switch
7, the loop 7 → 6 → 7 can be avoided. In other words, there is
a new segment update method to avoid black holes and loops,
which can update multiple nodes at the same time. With this
new segment update method, the time required to update the for-
warding rules of flow f 1 ismax{(t2+max(t9, t10, t11, t4)), (t5), (t7+
max(t6, t8))} ms. The results are shown in Table 1 and we can
observe that the time to update the rules by the new segment
update method can be greatly reduced compared to Cupid.

Transient congestion may also occur during flow migration
due to asynchronous update of the rules on switches. As shown
in Fig. 2(a), there are 5 flows from switch 1 to switch 3 using
1 → 2 → 3 and 1 → 4 → 3 respectively. In order to release
more available bandwidth for other flows on link 1 → 2, these
flows need to be migrated from the old paths (a) to the new paths

(b) in Fig. 2. We can see that if the flows f 3, f 4 and f 5 are moved
into link 1 → 2 before the flows f 1 and f 2 leave the link 1 → 2,
it will cause transient congestion on link 1 → 2.

In order to avoid transient congestion, Cupid [19] proposes a
congestion avoidance method, which first updates the flows that
need to move out of the potential congestion link to release the
bandwidth resources, and then updates the flows that need to be
moved into the potential congestion link. Therefore, in order to
avoid transient congestion on the link 1 → 2 in Fig. 2, by Cupid
algorithm [19], flows f 1 and f 2 are first updated, and then flows
f 3, f 4, and f 5 are updated.

However, note that the total bandwidth demand of four flows
f 1, f 2, f 3, and f 4 does not exceed the link capacity. If flows f 1, f 2,
f 3, and f 4 are updated first and then flow f 5 is updated, then the
update delay of flows f 3 and f 4 is reduced. Therefore, as long as
the traffic does not exceed the link bandwidth, some of the flows
that need to be moved into the potential congestion link can be
updated simultaneously with the flows that need to be moved
out. In this way, the update time of some flows that need to be
moved into the potential congestion link is shortened.

Therefore, in the process of avoiding black holes and loops,
we propose a more efficient method, which can update multiple
nodes at the same time, further reducing the time of rules update.
In the process of avoiding transient congestion, the number of
delayed updating flows is minimized, that is, the partial flow
that needs to be moved into the potential congestion link can be
updated in advance, thereby the rules update time of the flows is
reduced.

4. Our black holes and loops avoidance algorithm

In this section, we propose algorithms to avoid black holes and
avoid loops, and illustrate the algorithms by examples.

4.1. Black holes avoidance algorithm

Considering the inefficiency of reverse order updating, we
propose a new method of avoiding black holes by two steps, (i)
dividing the different parts of the new path and the old path
(i.e., the path before update) into independent segments, and (ii)
making the update of the first node later than other nodes in the
segment.

In order to find the difference between the new path and the
old path of a flow f , we need to identify the segmented nodes
which control the flow f to switch paths. The segmented node snf
is the common node between the new path Pnew(f ) and the old
path Pold(f ), but the next hop nh(snf , Pnew(f )) of the common node
in the new path is different from the next hop nh(snf , Pold(f )) of
the common node in the old path, as shown in Eq. (1).

SN(f ) ={snf |snf ∈ Pold(f ) ∩ Pnew(f ),
nh(snf , Pold(f )) ̸= nh(snf , Pnew(f ))}

(1)

After obtaining the segmented nodes SN(f ), in order to avoid
black holes during the flow f migration, we first need to divide
the new path Pnew(f ) of flow f into several segments S(f ) ac-
cording to the segmented nodes SN(f ), as shown in Eq. (2). The
start node s[0] of each segment s ∈ S(f ) is the segmented node
snf or the start node Pnew(f )[0] of the new path, and the end
node s[length − 1] of each segment is the precursor node ps(f )
of the segmented node in the new path or the destination node
Pnew(f )[length − 1] of the new path, and there is no same node
between segments.

S(f ) ={s | s ⊆ Pnew(f ), s[0] ∈ SN(f ) ∪ Pnew(f )[0],
s[length − 1] ∈ PS(f ) ∪ Pnew(f )[length − 1]
∀s′ ∈ S(f ), s ∩ s′ = ∅}

(2)
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Fig. 2. An example of route update. The link capacity is 1 unit, and the legend shows the size of flows. (a) and (b) represent the old paths and the new paths of
flows f 1, f 2, f 3, f 4 and f 5 respectively.

Table 1
Motivation summary.
Algorithm The time required by updating rules of flow f1 The number of directly updated flows

Cupid algorithm max{(t1 + t2), (t2 + t9 + t10 + t11 + t4), (t4 + t5), (t5 + t7), (t7 + t6 + t8)} 2
Our RU algorithm max{(t2 + max(t9, t10, t11)), (t5), (t7 + t6)} 4

Then, based on the obtained segments, we construct an update
dependency graph d(s) in each segment s to avoid black holes.
The update of the first node s[0] is later than that of other nodes
{s − s[0]} in the segment, as shown in Eq. (3).

d(s) = s[0] → {n|n ∈ s − s[0]} (3)

We design an algorithm to avoid black holes by constructing
black-holes-free dependency graph D for each flow f in Algo-
rithm 1. The main processes of the algorithms are as follows.
First, we find the segmented nodes by traversing the nodes in
the new path of flow f . If the node in the new path Pnew(f )
has appeared in the old path Pold(f ), and the next-hop of this
node in the new path is different from that in the old path, then
the node will be considered as a segmented node snf (lines 1–
10). Then we segment the new path of flow f according to the
segmented nodes. Finally, based on the obtained segments, we
construct an update dependency graph d(s) in each segment s
to avoid black holes (line 19). For example, as shown in Fig. 1,
the segmented nodes of flow f 1 are node 2, node 5, node 7 and
node 6. Then according to the segmented nodes, we segment the
new path of flow f 1, which can be divided into five segments: 1,
2 → 9 → 10 → 11 → 4, 5, 7, 6 → 8. Obviously, in Fig. 1, the
dependency graphs of the nodes update in these segments are:
{1}, {2} → {9, 10, 11, 4}, {5}, {7}, {6} → {8}.

4.2. Loops avoidance algorithm

In order to avoid loops during flow migration, we first need
to find the loops Loop(f ) formed by the old path and the new
path. Then, we construct a dependency graph d(loop) to update
the nodes in each loop loop(f ) ∈ Loop(f ), as shown in Eq. (4). The
update of first loop node loop(f )[0] that appears in the new path
is later than that of other nodes {loop(f )− loop(f )[0]} in the loop.

d(loop) = loop(f )[0] → {n|n ∈ loop(f ) − loop(f )[0]} (4)

We design an algorithm to avoid loops by building a loops-
free dependency graph for each flow f in Algorithm 2. The main
processes of the algorithms are as follows. First, we calculate the
loops Loop(f ) formed by the old path and the new path based
on the concept of strong connected components [19]. We use
Tarjan’s algorithm [29] to efficiently find all loops in the directed
graph formed by the old path and the new path (line 2). Its time

Algorithm 1 Black holes Avoidance Algorithm

Input: flows f , old path Pold(f ), new path Pnew(f )
Output: segmented nodes SN(f ) and black-holes free depen-

dency graph D
1: SN(f ) = D = ∅;
2: for i : i ∈ Pnew(f ) do
3: j = the next-hop of i on Pnew(f ) ;
4: if i ∈ Pold(f ) then
5: k = the next-hop of i on Pold(f ) ;
6: end if
7: if j ̸= k then
8: snf = j, SN(f ) = SN(f ) ∪ snf ;
9: end if

10: end for
11: i = Pnew(f )[0];
12: while i ∈ Pnew(f ) do
13: s = i;
14: j = the next-hop of i on Pnew(f );
15: while j ̸= φ ∧ j /∈ SN(f ) do
16: s = s → j;
17: i = j, j = the next-hop of i on Pnew(f );
18: end while
19: d(s) = s[0] → {n|n ∈ s − s[0]};
20: D = D ∪ d(s);
21: i = j;
22: end while
23: return SN(f ), D;

complexity is O(n + l), where n and l are the number of nodes
and edges in the network, respectively. Then, we construct a
dependency graph d(loop) to avoid loops (lines 3–6). For example,
as shown in Fig. 1, the new path and old path of flow f 1 form a
loop 7 → 6 → 7, and then the loops-free dependency graph is
{7} → {6} in Fig. 1.

5. Transient congestion avoidance algorithm

In this section, we will construct a model to avoid transient
congestion, and propose a transient congestion avoidance algo-
rithm. Then, we will illustrate the details of the algorithm by
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Table 2
Notations.
Symbol Meaning

df The demand of flow f
c(l) The capacity of link l
Fout (l) The set of flows that need to be removed from link l
Fun(l) The set of unchanged flows on link l
Fin(l) The set of flows that need to be moved into link l
N The number of flows in Fin(l)
xi Binary variable indicating whether the flow fi is selected as a delayed updating flow

Algorithm 2 Loops Avoidance Algorithm

Input: flow f , old path, new path
Output: loops-free dependency graph D
1: D = ∅;
2: calculate loops Loop(f ) by strong connected components;
3: for loop(f ) : loop(f ) ∈ Loop(f ) do
4: d(loop) = loop(f )[0] → {n|n ∈ loop(f ) − loop(f )[0]};
5: D = D ∪ d(loop);
6: end for
7: return D;

examples. For the sake of convenience, we first summarize some
notations in Table 2.

5.1. Finding potential congestion links

During flow migration, the total traffic on the link l does not
exceed the capacity of link l even before and after updating.
However, in the process of updating, due to the asynchronous
update of switches, the new flows may move into the link l before
the existing flows move out of the link l, which may result in
transient congestion. Therefore, in order to avoid transient con-
gestion during updating, we should carefully design a scheduling
sequence without congestion.

To avoid transient congestion, we first need to find the poten-
tial links that may be congestion. The potential congestion link l
needs to satisfy the following three conditions:

(1) Before updating:∑
f∈Fout (l)

df +

∑
f∈Fun(l)

df ≤ c(l) (5)

(2) After updating:∑
f∈Fun(l)

df +

∑
f∈Fin(l)

df ≤ c(l) (6)

(3) The worst case during updating:∑
f∈Fout (l)

df +

∑
f∈Fun(l)

df +

∑
f∈Fin(l)

df > c(l) (7)

Eq. (5) indicates that before updating, the sum of all flows
sizes on link l cannot exceed the link capacity c(l). Eq. (6) means
that after updating, the sum of all flows sizes on link l cannot
exceed the link capacity c(l). Eq. (7) represents the worst case
during updating, i.e., the new flows move into the link l before
the existing flows remove from the link l, resulting in the sum of
all flows sizes on link l exceed the link capacity c(l).

5.2. Constructing congestion-free dependency graph

To avoid transient congestion, we need to determine which
flows on the potential congestion link should be updated first and
which flows should be updated subsequently. At the same time,

in order to complete the flow migration as soon as possible, it is
necessary to minimize the number of delayed updating flows.

We first find the set Fs(l) of flows that needs to be delayed
updating on the potential congestion link l = (u, v), as shown in
Eq. (9). After {xi} is obtained in Eq. (9), we can further get {fi}.

xi =

{
1, if fi is delayed
0, otherwise

(8)

Fs(l) ={fi|min
N∑
i=1

xi, fi ∈ Fin(l), xi ∈ {0, 1}

N∑
i=1

dfixi ≥

∑
f∈Fout (l)+Fun(l)+Fin(l)

df − c(l)}

(9)

where xi is a binary variable, and xi = 1 if flow fi is selected
for delayed updating, otherwise, xi = 0.

∑
f∈Fout (l)+Fun(l)+Fin(l)

df
represents the sum of all flows sizes on link l in the worst case
during updating.

∑N
i=1 dfixi represents the sum of sizes of all

delayed updating flows.
∑N

i=1 dfixi ≥
∑

f∈Fout (l)+Fun(l)+Fin(l)
df − c(l)

indicates that the sum of sizes of all delayed updating flows is
not less than the excess link bandwidth. This means that these
delayed updating flows are only updated when there is enough
bandwidth, and it can further avoid the congestion on link l.

Furthermore we find the last segmented node (nfs(l) or nfc(l))
that controls each flow (i.e., the flow belongs to the set Fs(l) or
Fout (l) ∪ Fin(l)\Fs(l)) to move in or out of the potential congestion
link l = (u, v), as shown in Eqs. (11) and (11). The set Fout (l) ∪

Fin(l)\Fs(l) represents the flows that can be updated first on the
potential congestion link l. It should be noted that if node u is
a segmented node, then the last segmented node that we are
looking for is node u.

NFs(l) = {nfs |∀fs ∈ Fs(l)} (10)

NFc(l) = {nfc |∀fc ∈ Fout (l) ∪ Fin(l)\Fs(l)} (11)

Finally, a congestion-free dependency graph d(l) is constructed
between the segmented nodes based on the potential congestion
link l. In the graph, the segmented nodes in the set NFs(l) are
updated later than the segmented nodes in the set NFc(l), as
shown in Eq. (12).

d(l) = NFs(l) → NFc(l) (12)

The congestion avoidance algorithm is described in Algo-
rithm 3. In lines 1–11 of Algorithm 3, we calculate the maximum
link load on each link and find out the potential congestion link
CL by determining whether the maximum link load on each link
exceeds the link capacity c(l). Then, in lines 12–30, we find out
the set Fs(l) of delayed updating flows on the potential congestion
link l. Specifically, we first calculate the traffic size OverBw(l) that
exceeds the link capacity on potential congestion link l. Next, the
flows Fin(l) that need to be moved into link l are sorted by their
flow sizes (line 14). Then, the flow is selected one by one from
the set Fin(l) as a delayed updating flow, and the selected flow
is added to the set Fs(l) until the sum of the sizes of the flows
in the set Fs(l) is not less than OverBw(l) (lines 15–20), i.e., no
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Algorithm 3 Congestion Avoidance Algorithm

Input: flows F , segmented nodes SN(f ), old paths F , new paths L
Output: congestion-free dependency graph D
1: D = ∅;
2: for l : l ∈ L do
3: for f : f ∈ F do
4: if l ∈ Pold(f ) or l ∈ Pnew(f ) then
5: F (l) = F (l) + df ;
6: end if
7: end for
8: if F (l) > c(l) then
9: CL = CL ∪ l;

10: end if
11: end for
12: for l : l ∈ CL do
13: OverBw(l) =

∑
f∈Fout (l)+Fuc (l)+Fin(l)

df − c(l);
14: Sort by the size of flow Fin(l) in decreasing order;
15: for f : f ∈ Fin(l) do
16: Fs(l) = Fs(l) ∪ f ;
17: if the sum of the flow sizes in Fs(l) ≥ OverBw(l) then
18: break;
19: end if
20: end for
21: for fs : fs ∈ Fs(l) do
22: find the last segmented node nfs of fs before node v;
23: NFs(l) = NFs(l) ∪ nfs ;
24: end for
25: for fc : fc ∈ Fout (l) ∪ Fin(l)\Fs(l) do
26: find the last segmented node nfc of fc before node v;
27: NFc(l) = NFc(l) ∪ nfc ;
28: end for
29: d(l) = NFs(l) → NFc(l), D = D ∪ d(l);
30: end for
31: return D;

congestion will occur. Finally, in lines 21–30, a congestion-free
dependency graph d(l) is constructed to delay update the flows
in set Fs(l). For each potential congestion link l = (u, v), we first
need to find the last segmented node that controls each flow to
move in or out of the link l, and then construct a congestion-free
dependency graph d(l) based on these segmented nodes.

As shown in Fig. 2, the potential congestion link CL is link 1 →

2, the set Fs(l) of flows that need to wait for the update is {f 5},
and the segmented node that controls the flows f 1, f 2, f 3, f 4, f 5
to move in or out of the potential congestion link is node 1. Then,
the dependency graph for determining the update order of flows
f 1, f 2, f 3, f 4, and f 5 on node 1 is: {1f 5} → {1f 1, 1f 2, 1f 3, 1f 4}.

6. Rules update algorithmwithout black holes, loops and tran-
sient congestion

The problem of finding the fastest update schedule in the
presence of link capacity constraints is an NP-complete problem,
which is proved in [2]. Therefore, in this section, we propose a
heuristic rules update algorithm to calculate the rule updating
sequence to simultaneously avoid black holes, loops, and tran-
sient congestion. Next, we first give the definition of deadlock L
as follows [19].

Definition 1 (Deadlock L). For a set of potential congestion links
l0, l1, l2, . . . , lk, if NFc(l0) ∩ NFs(l1) = nf 0 ̸= ∅, NFc(l1) ∩ NFs(l2) =

nf 1 ̸= ∅, . . . , NFc(lk) ∩ NFs(l0) = nfk ̸= ∅, then the sets of
segmented nodes nf 0, nf 1, . . . , nfk form a deadlock L.

Fig. 3. The paths of flow f 1 and f 2. The link capacity is 1 unit and flows are
labeled with their sizes.

For example, in Fig. 3, there is a flow f 1 with size 0.4 unit
going through path 1 → 2 → 3 and a flow f 2 with size 0.7
unit going through path 1 → 4 → 3. In order to release more
bandwidth for other flows on link 1 → 4, the paths of flow
f 1 and flow f 2 need to exchange. However, transient congestion
may occur when updating flow f 1 and flow f 2. To avoid transient
congestion, we construct the congestion-free dependency graphs,
1f 2 → 1f 1 and 1f 1 → 1f 2 for flow f 1 and f 2. Therefore, a deadlock
1f 1 ⇄ 1f 2 is formed.

6.1. Algorithm description

We design a novel rules update (RU) algorithm to get a se-
quence US of rule updates that simultaneously avoid black holes,
loops, and transient congestion in Algorithm 4. We first get the
rules update dependency graph by Algorithms 1–3 (lines 2–3).
Then we traverse the nodes in the dependency graph D. If a node
does not have a predecessor node in D, then the node can be put
into the update sequence USi. If a node belongs to a deadlock
and has only one predecessor node in D, then the node can be
updated. For a deadlock, no flows can be directly updated, so
we need to employ multipath transition method to update. For
example, for deadlock 1f 1 ⇄ 1f 2 in Fig. 3, if node 2f 2 is updated
and the predecessor node of node 1f 2 has only node 1f 1, then
node 1f 2 can be updated.

Since there is not enough bandwidth to update flow f 2, we
now need to spilt it at node 1. For flow f 2, its available bandwidth
ab in the new path 1 → 2 → 3 is 0.6 unit, and we will shift
o.6 unit of f 2 to path 1 → 2 → 3. Then we recalculate the
size of updated flow f in the old path and in the new path, and
add the node nnew

f to the update sequence USi (lines 13–15). If all
the traffic on the old path dpoldf is finally shifted to the new path,
then the node nf is deleted from the dependency graph D (lines
16–18). Next, the above steps are repeated until the nodes in the
dependency graph D are empty.

6.2. Algorithm feasibility analysis

Our proposed RU algorithm can solve most of the cases except
there exist circles in the dependency graph. The circles may be
caused by conflicts between black holes avoid dependencies, loop
avoidance dependencies, and congestion avoidance dependen-
cies. We take Figs. 4(a) and 4(b) as an example. In Fig. 4(a), for
load balancing, flows f 1 and f 2 need to be migrated to a new
path, i.e, f 1: from 1 → 2 → 5 → 3 to 1 → 5 → 2 → 3,
f 2: from 5 → 4 → 2 → 3 to 5 → 3. To avoid black holes,
loops, and transient congestion during updating, the rule update
dependency graph is constructed and shown as Fig. 4(b). Due to
the conflict between loop avoidance dependency and congestion
avoidance dependency, there is a circle in Fig. 4(b), i.e., 5f 1 →

2f 1 → 5f 2 → 5f 1. In this case, the rule update cannot be
completed because each node in the circle has a precursor node
and no node can be updated. Compared to Cupid [19], which does
not consider the existence of circles in dependency graphs, we
verify in Section 7 that the possibility of circles in the dependency
graph is relatively low.
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Fig. 4. An example of circles in the dependency graph. The link capacity is 1 unit and flow is labeled with its size. The blue and the red lines indicate the paths of
flow f 1 and flow f 2, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Algorithm 4 Rules Update (RU) Algorithm

Input: : flows, old paths and new paths for each flow
Output: : updated sequence US
1: US = ∅, i = ab = 0;
2: Obtain dependency {{d(s)}, {d(loop)}, {d(l)}} by Algorithms

1–3;
3: D = {{d(s)} + {d(loop)} + {d(l)}};
4: while D /∈ ∅ do
5: i = i + 1;
6: USi = ∅;
7: for nf : nf ∈ D do
8: if the precursor node of nf on D = ∅ then
9: USi = USi + nf ;

10: end if
11: if nf ∈ deadlock ∧ the number of precursor nodes of nf

on D = 1 then
12: ab = min{AvailBw(l)}(l ∈ pnew(f ));
13: dpoldf = dpoldf − ab ;
14: dpnewf = dpnewf + ab ;
15: USi = USi + nnew

f ;
16: if dpoldf == 0 then
17: D = D − nf ;
18: end if
19: end if
20: end for
21: US = US + USi, delete USi from D ;
22: end while
23: return US;

6.3. Algorithm complexity analysis

Given l links, n nodes and m flow requests in the network, let
d1 and d2 denote the depths in the dependency graphs of RU algo-
rithm and Cupid algorithm, respectively. It is not difficult to find
out that the complexity of RU algorithm and Cupid algorithm is
O(d1m2n2) and O(d2m2l2) in the worst case. The depth of the rule
update dependency graph is directly determined by the number
of nodes updated at each time. Thus, we have d1 < d2 because
RU algorithm can update multiple nodes at each time while Cupid
algorithm that updates the nodes one by one in reverse order. In
addition, n ≪ l in general. Therefore, RU algorithm has lower
complexity than Cupid algorithm.

7. Performance evaluation

In this section, we will discuss the performance of our algo-
rithms in different network topologies and traffic loads, including
the number of segments, the number of directly updated flows on
potential congestion link, and the update time. And we compare
them with Cupid [19] and One Shot [21].

7.1. Simulation setup

Operating environment: We implement our algorithms using
1500+ lines of Python code on a computer with the hardware
configuration of 3.1 GHz CPU, i7-5557U processor and 4G RAM.

Network topology: We evaluate our algorithm in the fol-
lowing two topologies. (1) A 4-pod fat-tree [30] DCN shown in
Fig. 5(a) with 20 switches and 16 hosts. Each link bandwidth
is 1 Gbps in the network. (2) A realistic WAN topology for in-
terconnecting Microsoft’s data centers [2] shown in Fig. 5(b),
where each switch is connected to 2 hosts shown in the legend.
Therefore, this network has 8 switches and 16 hosts. And each
link bandwidth is 1500 Mbps in the network.

Traffic generation: In this experiment, traffic requests follow
Poisson distribution. The source and destination nodes of each
request are randomly selected. The size of all flows is constant,
which is a different value in the different tests below. Each
network has 100 flows running simultaneously.

Paths generation: In this experiment, we first use the load
balancing algorithm to calculate the path of all flows, and use the
calculated paths as the current paths of flows. Then we randomly
select 2 links as fault links in the entire network. We again use
the load balancing algorithm to recalculate the paths for all flows
and use the rerouted paths as the new paths for flows.

Time parameters: The total update time in the experiment
consists of two parts: the time to generate the rule update se-
quence and the time to update the forwarding rules, and the
update forwarding rule includes modification rule and addition
rule. In the experiment, the time parameters of the modification
rule and addition rule are set to 10 ms and 5 ms [2,28].

Algorithm comparison: (1) One Shot [21]: Transition directly
from the old path to the new path. (2) Cupid [19]: Congestion-
free consistent update algorithm discussed in Section 3. (3) RU:
Our rules update algorithm proposed in Algorithm 4.

7.2. Comparison results for various network topologies

Fig. 6 shows the number of segments versus the corresponding
occurrence probability in the new path of the flow in the DCN
topology and the WAN topology. We can find from Fig. 6 that
most of the flows have only one segment. This is because in the
DCN topology and the WAN topology, there are many alternative
paths so that most of flows only have the same ingress and egress
switches as common nodes between the old paths and new ones.
Therefore, the segmentation reverse update proposed by Cupid
has little benefit for DCN topology and WAN topology. On the
contrary, for our RU algorithm, the fewer the segments are, the
more the benefits are. This is because our proposed RU algorithm
can update multiple nodes in each segment instead of updating
the nodes one by one like Cupid. It can also be observed that the
number of segments obtained by the RU algorithm is less than
the Cupid algorithm. This is because the segment method of the
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Fig. 5. Network topologies in different scenarios.

Cupid algorithm is different from that of the RU algorithm. In the
Cupid algorithm, a node can become a segmented node as long as
the node satisfies: (i) it is a common node of the new path and
the old path, (ii) it has a different previous or next hop in the
new path and the old path. However, with our RU algorithm, the
segmented node can only be the common node of the new path
and the old path and the next hop node of the common node is
different from that in the new path and the old path.

Fig. 7 shows the number of flows that can be directly updated
on a single potential congestion link during updating. The x-
axis in Fig. 7 represents the minimum, average and maximum
number of flows that can be directly updated on a single potential
congestion link among 100 flows. The average number of flows
is the sum of the number of flows that can be directly updated
on all potential congestion links divided by the total number
of potential congestion links. We can observe from Fig. 7 that
using RU algorithm, the number of flows that can be directly
updated on a single potential congestion link is increased by an
average of 1 and 67% in the DCN and the WAN respectively,
compared with Cupid algorithm. The reason is that our RU algo-
rithm considers maximizing the number of updatable flows when
constructing a congestion-free dependency graph. Fig. 7 shows
that the minimum number of flows is 0. This is because in the
case of low network utilization, many alternative paths to the
flows are provided, so there are no potential congestion links. We
also observe that the number of directly updated flows in Fig. 7(b)
is less than the number of directly updated flows in Fig. 7(a). This
is because there are more alternative links in the DCN topology
than in the WAN topology. Therefore, in the DCN topology, the
number of flows with changed paths is more than that in the
WAN topology.

Figs. 8 and 9 show the update time of simultaneously updating
100 flows at light (< 30% network utilization), medium (30–60%
network utilization) and heavy (> 60% network utilization) traffic
load in DCN and WAN, respectively. The network utilization is
measured by weighted link utilization. The update time includes
two parts: the time to generate the update order and the time
to update the forwarding rules [21]. Because the operation of

modifying the rules may occur in each update sequence, we
assume that it takes 10 ms to update the forwarding rules for each
update sequence. We observe from Figs. 8 and 9 that in the DCN
and WAN topology, RU algorithm takes longer time than the one
shot algorithm, but it takes less time than the Cupid algorithm
to schedule a feasible update sequence. The reason is that One
Shot is an update method that directly transits from the old path
to the new path without considering the dependencies between
the rules update. Thus it does not take more time to generate the
order, and only take the 10 ms to update the forwarding rules.
The RU algorithm takes less time to update the rules than the
Cupid algorithm, because the RU algorithm can update multiple
nodes at once and minimize the number of delayed update flows,
instead of updating the nodes one by one and delaying the update
of all moved into flows on potential congestion links in Cupid.
Therefore, compared with the Cupid algorithm, the RU algorithm
reduces the search overhead of the rule update dependency graph
and the number of rule update sequence waiting for updating,
thereby the time for the rule update is reduced.

Another observation from Figs. 8 and 9 is that for light, med-
ium, and heavy traffic load, the update time of the RU algorithm
is 48%, 34%, and 25% less than the update time of Cupid algorithm,
respectively. The reason is that under light traffic load, most
flows have only one segment in DCN and WAN topologies as
shown in Fig. 6. Therefore, the segment update by Cupid has
little benefit for DCN and WAN topologies. Moreover, under light
traffic load, few links become congested ones during the update,
so the rule update dependency graph is relatively simple. When
the network load is larger, the more segments are generated,
thus the effect of multiple node updates in RU algorithm is not
as obvious as that of light load traffic. However, the greater the
network load, the higher the probability of transient congestion.
In the process of avoiding transient congestion, the RU algorithm
maximizes the number of flows that can be directly updated
on potential congestion link. Thus the search overhead of the
rule update dependency graph is reduced, and the RU algorithm
can effectively reduce the time for rule update under different
network traffic load. Furthermore, generating update sequences
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Fig. 6. The number of segments by Cupid algorithm and our RU algorithm for different topologies.

Fig. 7. The number of flows that can be directly updated on a single potential congestion link.

Fig. 8. Update time at different traffic load in DCN scenario.

in WAN topology takes less time than that in DCN topology. This
is because there are fewer alternative paths in the WAN than that
in the DCN, thus the number of flows that change paths in the
WAN topology is less than that in the DCN topology, and further
the complexity of the dependency graph is reduced.

Fig. 10 shows the changes of percentage of excess link capacity
as link utilization increases. Congestion may happen when the

link utilization is larger than 50%, and a larger value indicates
a higher probability of congestion. The y-axis represents the
maximum percentage of excess link capacity. We can observe
that as the link utilization increases, the percentage of excess
link capacity by the One Shot method increases. However, for
our RU algorithm, as the link utilization increases, the percentage
of excess link capacity is always zero. This is because our RU
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Fig. 9. Update time at different traffic load in WAN scenario.

Fig. 10. Percentage of excess link capacity comparison.

Fig. 11. The probability of occurrence of loops, congestion, circles in the worst case of inconsistent rule updates.

algorithm takes into account the update order of rules so that
congestion can be avoided. On the contrary, One Shot method
directly issues rules without considering the order of rule updates
so that congestion will occur due to asynchronous update of
switches.

7.3. Feasibility analysis

The proposed RU algorithm can avoid loops, black holes and
congestion, except for circles. To verify the feasibility of the

RU algorithm, we evaluate the probability of loops, transient
congestion, block holes, and circles occurring in DCN and WAN
topologies as shown in Fig. 5. All experiments are run 5000 times
under different number of flows, and we record the number of
loops, transient congestion, block holes, and circles and further-
more, obtain the probability of occurrence of loops, transient
congestion, block holes, and circles in each experiment. In two
networks, the number of flows varies from 50 to 250, and the
size of the flows ranges from 10 M to 100 M, which represents
different scale of traffic loads in the network.
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Figs. 11(a) and 11(b) indicate that as the number of flows
increases, the probability of occurrence of transient congestion
during updating is increasing. This is because the network load in-
creases as the number of flows increase, resulting in the reduction
of the number of feasible alternate paths. Besides, the proba-
bility of black holes occurring is always 100%. This is because
black holes are very easy to occur during flow migration, and a
large number of flows in this experiment need to be migrated.
In addition, we can also observe that the probability of loops
occurrence during updating increases at first and then decreases
with the number of flows increasing, but the probability of loops
occurrence does not exceed 12%. It is obvious that the probability
of loop occurrence is increasing with the number of flows increas-
ing because more flows are required to change paths. However,
when the number of flows is excessively large, the alternate
path for each flow will be reduced in the network due to the
limited link capacity, and the probability of loops occurrence will
decrease. More importantly, we can see that the possibility of
circles occurrence in the dependency graph is always close to
zero, only 0.4% and 0.6% in DCN and WAN, respectively, when
the number of flows equals to 250. Therefore, we can obtain that
RU algorithm can solve most of cases, 99.6% in DCN and 99.4%
in WAN, and the possibility of circles occurrence in the depen-
dency graph is relatively low even when network traffic is very
high.

8. Conclusions

In this paper, we study the consistency of flow forwarding
rules update in data plane in SDN. First, we analyze how to
avoid black holes, loops and transient congestion, and construct
the models without black holes, loops and transient conges-
tion, respectively. Furthermore, we propose the black holes, loops
and transient congestion avoidance algorithms, which reduce
the queuing delay of the rules update of flows. Subsequently,
we propose a RU algorithm that combines the three avoidance
algorithms to update the flow rules to simultaneously avoid black
holes, loops and transient congestion. Finally, simulation results
show that our algorithm significantly increases the number of
flows that can directly be updated on potential congestion links
and reduce the time for rules update.
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