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a b s t r a c t

An effective way to reduce network energy consumption of data center networks (DCNs) is to activate
network elements as few as possible, complete transmission in as short a time as possible, and set
unnecessary network elements to sleep mode. At present, most existing energy saving works considered
the network energy saving from the dimension of time or power separately. However, in fact these
two dimensions can interact with each other, i.e., reducing the network delay may lead to the increase
of network energy consumption, and vice versa. In this paper, two dimensions of time and power are
comprehensively studied in theMinimumNetwork Energy Consumption (MNEC) problem. First of all, we
formulate theMNEC problemby considering both time and power, and prove that it is a NP-hard problem.
Furthermore, we propose a heuristic Integrated Time and Power (ITP) algorithm, which combines the
link sharing avoidance algorithm to reduce the network delay from the dimension of time as well as the
switch aggregation algorithm to reduce the energy consumption from the power dimension. Finally, the
performance of ITP algorithm is evaluated under different network topology, network size, traffic size and
flow number under the network environment based on Mininet and Ryu controller. Experimental results
show that the ITP algorithm outperforms the existing network energy saving algorithm in terms of energy
consumption.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, with the development of cloud computing and
video services, the scale and energy consumption of data centers
have increased dramatically. In 2013, the energy consumption of
data centers in the United States reached 91 billion kilowatt-hours,
which was close to that of the Three Gorges hydropower station,
the largest hydropower station in the world, with an annual ca-
pacity of 98 billion kilowatt-hours. In addition, it is expected that
by 2020 the energy consumption will reach 140 billion kilowatt-
hours [1]. Due to the rapid increase of energy consumption in
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data centers, energy saving has become one of the major bot-
tlenecks of design data centers. In the meanwhile, the network
energy consumption dominates the whole energy consumption
in the data center, up to 15% [2]. Therefore, how to reduce data
center network energy has become a hot topic in industry and
academia.

In order to ensure that the data center has better performance,
researchers have proposed numerous the network structures with
redundant links, such as Fat-Tree [3], Bcube [4], FiConn [5]. Al-
though redundant links and switches in network topology de-
signed for meeting peak traffic requests can improve the perfor-
mance of network bandwidth, they also lead to a sharp increase
in network energy consumption since peak traffic is not regular at
most of the time in the network. This means that running unnec-
essary links and switches will lead to the waste of network energy.
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An effective way to save energy is to activate as few switches and
links as possible, finish transfers in as short time as possible, and
sleep unnecessary network elements. Most existing works focus
on local energy saving by considering how to make the switch
component sleep for a long time when the switch is idle [6–8],
or lets the switch adjust the sending rate according to network
load [9]. In fact, switches can only obtain information from the
surrounding switches and hosts, and cannot optimize the network
energy globally in traditional networks.

Software Defined Networking (SDN) technologywith separated
control plane anddata plane is emerged as a newnetwork architec-
ture. The SDN controller can obtain the global network information
and control the data transmission in the whole network. Owing
to the global network view, operators can collect topology infor-
mation and forwarding state of the entire network. Meanwhile,
the network flow can be adjusted dynamically, and more reason-
able and energy-saving path for the flow is planned. Numerous
network energy conservation works [10–15] studied the network
energy conservation from the global view of the network. These
researchworks can be divided into two categories. From the power
dimension, part of the research works [10–14] aggregated traffic
into the smallest set of network elements, and let the idle network
elements be sleep mode to reduce energy consumption. However,
their traffic aggregation allows link sharing, which creates more
network bottlenecks and reduces link utilization. From the dimen-
sion of time, part of the research works [15,16] employed flow
scheduling method to reduce the generation of network bottle-
necks and network latency, so as to achieve the purpose of energy
saving. However, these research works only plan a shortest path
for the flow from idle links, rather than finding the path with
minimum power based on the network state.

Different from the previous works of saving energy from time
or power dimension separately, in this paper, we integrate two
dimensions of power and time to find a path set for all traffic
requests, activate links and switches in the path set, and configure
unnecessary network components to sleep mode. From the time
dimension, we propose a link sharing avoidance algorithm to im-
prove the link utilization, avoid the network bottleneck and reduce
the network transmission delay by making the flow occupy the
link separately, so as to reduce the network energy consumption.
In this algorithm, it is worth noting that if the given flow cannot
find a path to avoid the shared link, then the path with minimum
energy consumption for the shared link is planned for the flow.
From the dimension of power, we propose a switch aggregation
algorithm that improves the utilization of switches and reduces
energy consumption without link sharing. By combining the link
sharing avoidance algorithm with the switch aggregation algo-
rithm, furthermore, we propose a heuristic Integrated Time and
Power (ITP) algorithm to transform the path search problem of
minimumnetwork energy consumption into theminimumweight
path planning problem. The link sharing avoidance algorithm and
the switch aggregation algorithm jointly determine the path se-
lection by setting the appropriate path weight. The weight of a
path reflects the energy consumed in the path, that is, the smaller
the weight, the less energy consumption. As a result, the time
complexity of the minimum energy path planning problem is re-
duced to the time complexity of the minimum weight path search
problem, so that the algorithm has a high real-time performance
and can be deployed in large-scale networks.

The main contributions of this paper are summarized as fol-
lows:

• We formulate the Minimum Network Energy Consumption
(MNEC) problem under the constraints of flow conservation,
link capacity and state relation. Then, we prove that it is a NP-
hard problem and transform it into the minimum weighted
path planning problem in the weighted graph.

• We propose the link sharing avoidance algorithm from time
dimension as well as the switch aggregation algorithm from
power dimension to achieve energy savings. In particular, we
propose a heuristic Integrated Time and Power (ITP) algo-
rithm to further reduce energy consumption.

• We evaluate our algorithm in the experimental environment
built by Mininet [17] and Ryu controller [18]. Experimental
results show that our proposed algorithm has more energy
savings under different network topologies, network scales,
flow sizes and the number of flows.

The reset of the paper is organized as follows. In Section 2, we
introduce the related work of network energy saving. In Section
3, we establish the MNCP model and proved that it is a NP-hard
problem. Then, we propose the ITP algorithm that combines two
dimensions of time and power to save network energy consump-
tion in Section 4. In Section 5, the performance of our algorithm
is tested through extensive simulation. Section 6 concludes this
paper.

2. Related work

In this section, we will introduce the related work on energy
savings in traditional data center networks (DCNs) and the emerg-
ing Software Defined Networking (SDN).

In the traditional DCNs, the switches can only obtain the in-
formation of their surrounding nodes, thus it is difficult to opti-
mize the entire network. Therefore, numerous research efforts [6–
9,19,20] focus on the optimization of local energy. Gupta et al. [6]
showed that setting the switch to sleep mode saves network en-
ergy and does not affect the upper layer protocol when the device
is idle. In [7], they verified that the sleep of switches in local area
network (LAN) can be indeed beneficial to save network energy. As
an extension, they proposed a switch DELS sleep mechanism [19],
which enables the switch to take into account both packet trans-
mission and energy saving under low load conditions. In [8], they
proved that energy can be greatly reduced by turning off the switch
ports, even when the network load is heavy, and the delay caused
by energy saving does not affect the behavior of the high-level pro-
tocol. In addition, it is found that the switching fabric can also con-
figured in sleep. Furthermore, Nedevschi et al. [9] demonstrated
that the energy saving mechanisms based on adaptive network
load and idle time sleep can reduce the energy consumption of the
network.

With the emergence of SDN technology with a global view of
thenetwork,many researchworks [6,10,11,15,21–25]make efforts
on the global optimization of the network. From the dimension of
power, Gupta et al. [6] proposed to transfer the low load link traffic
to other links, so that more links are idle and the idle links are
set to sleep. However, this paper does not consider network layer
routing algorithm. Furthermore, Chabarek et al. [21]made a survey
on energy saving of network and routing design inwired networks,
but they do not carry out specific routing design. Seetharaman
et al. [22] proposed the Elastictree algorithm which makes full use
of the Fat-Tree data center networks, but they only focus on energy
saving in the tree-based network. Zhang et al. [23] proposed the
GreenTE model, which is a maximum energy saving model under
the constraints of link utilization and packet delay. However, the
model being solved by Cplex has higher time complexity when the
scale of network is larger.

To overcome excessive time consumption for energy saving in
large-scale networks, Wang et al. [10] proposed two greedy algo-
rithms to ensure a certain real-time performance. In addition, they
proposed a heuristic algorithm for partially deployed SDN from the
power dimension, which generates more idle links by aggregating
traffics from low-load links [11]. However, it allows link sharing,
which reduces power consumption, but greatly increases network
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Table 1
Notations.
Symbol Meaning

S Set of switches
L Set of links
E Energy consumption of the whole network
Eswitch(s) Energy consumption of switch s
Efixed(s) Fixed energy consumption of switch s
Eports(s) Energy consumption for all ports on switch s
Eport (s, i) Energy consumption of port i on switch s.
Elink(u, v) Energy consumption of link (u, v)
Ttrans(m) Transmission delay of flowm
T (s) Activation duration of switch s
T (u, v) Activation duration of link (u, v)
Xm(u, v) Binary variable indicates whether flow m is the maximum

duration flow on (u, v)
Ym(u) Binary variable indicates whether flowm is the maximum

duration flow on u
Zm(u, v) Binary variable indicates whether flowm passes through

(u, v)
rm Size of flowm
bm Bandwidth of flow m
fm(u, v) The flow m along link (u, v)
c(u, v) The capacity of link (u, v)
a(u, v) Power of link (u, v)
b(s) Fixed power of switch s
((u, i), (v, j)) Link from port i of switch u to port j of switch v

(u, v) Link from switch u to switch v

κm Flow mwith source s, destination d and data size rm
α, β, γ , δ Proportional coefficient constant

latency and packet loss, thereby further increasing network energy
consumption. From the dimension of time, Li et al. [15] proposed
the exclusive routing to save energy, which allows the flow to
occupy the link alone to reduce network bottlenecks and improve
link utilization. On this basis, Xu et al. [16] improved the quality of
service by taking into account the flow deadline, and also improves
the link and switch utilization by preferentially scheduling the
flow with the minimum activation time. In the process of path
planning, they only planed the shortest path for the flow. However,
the shortest path is not always the path with minimum energy.
In [25], Zhao et al. verified that link sharingwill greatly increase the
network transmission delay and the network energy consumption
in multipath routing. Different from previous work, we jointly
consider two dimensions of time and power to reduce network
energy consumption.

3. Systemmodel

In this section, we first introduce the energy consumption char-
acteristics of switches andnetwork. Subsequently,we establish the
MinimumNetwork Energy Consumption (MNEC) problem accord-
ing to the energy consumption characteristics. Finally, we prove
that the MNEC problem is a NP-hard problem. The notations used
are listed in Table 1.

3.1. Energy features of switch

The energy consumption of switches consists of three parts:
chassis, line-cards and ports. Among them, the chassis and line-
cards energy consumption are fixed. Once the switch is activated,
fixed energy consumption will be generated. Ports can be con-
figured to activate or sleep independently, resulting in dynamic
changes in the energy consumption of the switch. Therefore, the
switch energy consumption can be divided into two parts: ports
energy consumption and fixed energy consumption. Although the
energy consumption of chassis and line-cards is the main part (up
to 150 watts) of the energy consumption of switch, the energy
consumption of ports cannot be ignored (1–2 watts per port).

In addition, increasing traffic from zero to full load will increase
port power by less than 5%, which means that the impact of port
capacity utilization is negligible [26]. Based on the above analysis,
we can build the following energy consumptionmodel of switch s:

Eswitch(s) = Eports(s) + Efixed(s) (1)

where Eports(s), Efixed(s) and Eswitch(s) indicate the ports energy con-
sumption, fixed energy consumption and total energy consump-
tion of the switch s, respectively. Once the switch is activated,
i.e., at least one port is activated, the fixed and dynamic energy
consumption are generated. Otherwise, if all ports of switch fall
asleep, the switch can be set to sleep, and the switch’s energy
consumption is 0.

3.2. Energy features of network

The total network energy consumption consists of both fixed
and dynamic energy consumption of all switches. Therefore, the
network energy consumption can be expressed by

E =

∑
s∈S

Eswitch(s) =

∑
s∈S

Eports(s) +

∑
s∈S

Efixed(s) (2)

In order to simplify the expression of network energy con-
sumption, We replace port energy consumption with link energy
consumption. Link ((u, i), (v, j)) is simplified to (u, v). Elinks(u, v)
represents the energy consumption at link (u, v), which is equiv-
alent to the ports energy consumption at both ends of link (u, v).
Thus, the network energy consumption is expressed by

E =

∑
((u,i),(v,j))∈L

(Eport (u, i) + Eport (v, j)) +

∑
s∈S

Efixed(s)

=

∑
((u,i),(v,j))∈L

Elinks((u, i), (v, j)) +

∑
s∈S

Efixed(s)

=

∑
(u,v)∈L

Elinks(u, v) +

∑
s∈S

Efixed(s)

(3)

It is known that the energy consumption is equal to the power
multiplies the time, i.e., E = P ∗ T . a(u, v) and b(s) represent the
power of link (u, v) and switch s. T (u, v) and T (s) represent the
activation duration of link (u, v) and switch s. Thus Eq. (3) can be
transformed as

E =

∑
(u,v)∈L

a(u, v) ∗ T (u, v) +

∑
s∈S

b(s) ∗ T (s) (4)

where Ttrans(m) represents the transmission duration of flowm, rm
denotes the data size of flow m, and bm indicates the bandwidth
of flow m. According to the relationship among transmission du-
ration, bandwidth and data size, we have the following equation

Ttrans(m) =
rm
bm

(5)

The goal of this work is to optimize the energy consumption
for the transmission of data packets. Thus, we get the following
equation

T (u, v) =

M∑
m=1

(
rm
bm

∗ Xm(u, v)) (6)

where the term
∑M

m=1(
rm
bm

∗ Xm(u, v)) represents the transmission
duration on link (u, v). If flow m is the flow with maximum dura-
tion on link (u, v), then the transmission duration of flowm is equal
to the transmission duration of link (u, v).
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Similarly, the activation duration of switch u can be given by

T (u) =

M∑
m=1

(
rm
bm

∗ Ym(u)) (7)

where the term
∑M

m=1(
rm
bm

∗ Ym(u)) represents the transmission
duration on switch u. If flowm is the flowwithmaximum duration
on switch u, then the transmission duration of flow m is equal to
the transmission duration of switch.

3.3. Energy saving problem formulation

According to the above analysis of the characteristics of the en-
ergy consumption of switches and network, we substitute Eqs. (6)
and (7) into the energy expression (4), and can formulate the Min-
imum Network Energy Consumption (MNEC) problem as follows

min
∑

(u,v)∈L

(a(u, v) ∗

M∑
m=1

(
rm
bm

∗ Xm(u, v)))

+

∑
u∈S

(b(u) ∗

M∑
m=1

(
rm
bm

∗ Ym(u)))

(8)

where
∑

(u,v)∈L(a(u, v) ∗
∑M

m=1(
rm
bm

∗ Xm(u, v))) and
∑

u∈S(b(u) ∗∑M
m=1(

rm
bm

∗ Ym(u))) represent total energy consumption of links
and total energy consumption of the switches in the network
respectively.

The optimization problem (8) is constrained by the following
conditions.

(1) Flow conservation constraint: The flow out of a switch
is equal to the flow entering the switch, except for the source,
which ‘‘produces" flow, and the destination, which ‘‘consumes"
flow.

∑
{v|(u,v)∈L} fm(u, v) denotes the traffic generated on switch

u and
∑

{v|(v,u)∈L} fm(v, u) denotes the traffic received on switch u.
Moreover, we assume that there are bm units of traffic generated
at source src and bm units of traffic received at destination dst . The
traffics at immediate nodes are conserved, i.e.,

∑
{v|(u,v)∈L} fm(u, v)−∑

{v|(v,u)∈L} fm(v, u) should be zero. Overall, the traffic conservation
constraint can be given by∑
{v|(u,v)∈L}

fm(u, v) −

∑
{v|(v,u)∈L}

fm(v, u)

=

⎧⎨⎩
bm, if u = src
−bm, if u = dst
0, otherwise

(9)

(2) Link capacity constraint:
We assume that

∑M
m=1 fm(u, v) denotes the total traffic passing

through link (u, v), and c(u, v) ∗ Zm(u, v) represents the capacity
of link (u, v), where Zm(u, v) is binary variable indicating whether
flow m passes through (u, v). If a flow passes through the link
(u, v), the link is activated and the capacity is greater than zero.
Otherwise, the link is in sleep and its capacity is zero. When the
link is activated, the total traffic on the link should not exceed its
capacity. Link capacity constraint can be given by
M∑

m=1

fm(u, v) ≤ c(u, v) ∗ Zm(u, v) (10)

(3) Bottleneck link capacity constraint:
The bandwidth of flow depends on how many flows pass

through thebottleneck linkwhen the following transmissionmeth-
ods: RAPID [27], UDT [28], RUNAT [29], or TCP variants, are utilized.

On the bottleneck links, the traffic is equal to the capacity. The
bottleneck constraint can be expressed by

fm(u, v) =
c(u, v)∑M

m=1 Zm(u, v)
(11)

where
∑M

m=1 Zm(u, v) represents the number of flows passing
through link (u, v).

(4) State relation constraint:
The flow m with maximum duration on link (u, v) means that

the flowm passes through link (u, v), and has the longest duration
in all flows over link (u, v). State relation constraint on link (u, v)
can be represented as

Xm(u, v) =

{
1, if m = argmax∀j {

rj
bj

∗ Zj(u, v)}

0, otherwise
(12)

where the term rj
bj

∗Zj(u, v) represents the duration of flow j on link

(u, v). If the flow j passes (u, v), then the term equals rj
bj
, otherwise,

0.
Similarly, the flow m with maximum duration on switch u

means that flowm passes through the links connected to switch u,
and its duration is longest in all flows over links to switch u. State
relation constraint on switch u can be given by

Ym(u) =

{
1, if m = argmax∀j,∀v|(u,v)∈L {

rj
bj

∗ Zj(u, v)}

0, otherwise
(13)

If the traffic of flowm over (u, v) is greater than 0, it means that
the flowm passes through link (u, v), which can be represented by

Zm(u, v) =

{
1, if fm(u, v) > 0
0, otherwise

(14)

3.4. NP-hard proof of MNEC problem

In this subsection, we prove that the MNEC problem is a NP-
hard problem. To this end, we first describe the classical 0-1 knap-
sack problem, and then reduceMNEC problem to the 0-1 knapsack
problem.

3.4.1. 0-1 knapsack problem
The 0-1 knapsack problem can be described as: Given a set of

items N and each item with a weight and a value, we determine
which items are included in a collection so that the total value is
as large as possible under the constraint of a given weight limit.
Let vi and wi be the value and weight of the item i respectively. Let
W be the limit of total weight and the binary variable xi indicate
whether item i is included. Thus, the 0-1 knapsack problem can be
expressed as

max
N∑
i=1

vixi

s.t.

⎧⎪⎨⎪⎩
N∑
i=1

wixi ≤ W ,

xi ∈ {0, 1}, i = 1, . . . ,N.

(15)

Theorem 1 (NP-hard). MNEC problem is a NP-hard problem.

Proof. In order to prove that MNEC problem is a NP-hard problem,
we consider a simple case with a topology as shown in Fig. 1.
Suppose there is a traffic demand κ = {(s, d, r)} with source s,
destination d and data size r . The bandwidth of (v, d) is less than
or equal to any link bandwidth from s to v. It is not difficult to
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Fig. 1. Topology as an example of NP-hard proof.

observe from Fig. 1 that link (v, d) is a bottleneck link. According
to bottleneck capacity constraint and flow conservation constraint,
we have b1 = c(v, d) and f1(s, i) = f1(i, v). By the state relation
constraint, we have X1(s, i) = X1(i, v) = Y1(i) = Z1(s, i) = Z1(i, v).
We define Zi ≜ X1(s, i) = X1(i, v) = Y1(i) = Z1(s, i) = Z1(i, v) and
let

ai = (a(s, i) + a(i, v) + b(i)) ∗
r1

c(v, d)
ci = min{c(s, i), c(i, d)}

constant = (a(v, d) + b(s) + b(v) + b(d)) ∗
r1

c(v, d)
Furthermore, the MNEC problem can be reformulated as

min
N∑
i=1

aiZi + constant

s.t.

⎧⎪⎨⎪⎩
N∑
i=1

ciZi ≥ c(v, d)

Zi ∈ {0, 1}, i = 1, . . . ,N.

(16)

It is clear that problem (16) is equivalent to problem (15), which
means that the MNEC problem can be reduced to the 0-1 knapsack
problem. Since the 0-1 knapsack problem is a known NP-hard
problem, our MNEC problem is also NP-hard. ■

4. Algorithm description

Dijkstra algorithm is the most common algorithm to find the
shortest path and the minimum weight path, which has low time
complexity. Considering the time dimension, the link sharing will
lead to longer network delay and increase network energy con-
sumption while port energy consumption on switches is far less
than the fixed energy consumption considering the power di-
mension. Thus, we use the link weight to reflect the link power,
thus the minimum power path finding problem is transformed
into the minimum weight path finding problem. Specifically, we
propose a link sharing avoidance algorithm described in Algorithm
1 to reduce network delay and energy consumption and a switch
aggregation algorithm described in Algorithm 2 to reduce power
by increasing the port utilization of activated switches. Both algo-
rithms will be given in Sections 4.1 and 4.2, respectively.

In the proposed algorithms, therefore, the weight plays an
imperative role in the path planning. In the following, we would
like to introduce somevariables that are used to determineweights
in the algorithms. Pweight represents the energy cost of activating
a port in sleep mode, which is proportional to the power of port
and is expressed in Eq. (17). Sweight represents the energy cost of
activating a sleep switch, which is proportional to the fixed power
of switch and is given as Eq. (18). Xweight represents the cost of
occupying a link that already has other flows,which is proportional

Table 2
Comparison of energy consumption between link sharing avoidance and link shar-
ing without avoidance.

Link sharing avoidance Link sharing without
avoidance

Time consumption m
c

2∗m
c

Power 8a + 24b 7a + 20b
Energy consumption m

c ∗ (8a + 24b) 2∗m
c ∗ (7a + 20b)

to Pweight and Sweight and is given by Eq. (19). In general, to avoid
sharing links, the ratio coefficients α and β are set to be a large
constant.

Pweight = γ ∗ a(u, v) (17)

Sweight = δ ∗ b(u) (18)

Xweight = α ∗ Sweight + β ∗ Pweight (19)

4.1. Link sharing avoidance algorithm

Themain idea of link sharing avoidance algorithm is to avoid the
link sharing by increasing the weight of the links that have been
occupied by other flows. The event of triggering this algorithm
has two cases, i.e., the arrival of new flows, or the completion of
previous flows. If in the first case that a new flow takes a link, then
we increase theweight of the link byXweight . In thisway, other flows
will avoid using this link. If in the second case that the previous
flows have been completed, then these occupied links need to be
released and the link weight on the path are reduced by Xweight .
The main procedures of the algorithm are given in Algorithm 1. It
is important to note that if there is no path to avoid sharing links,
a minimum energy consumption path with shared links is planned
for the flow.

In order to explain the advantages of link sharing avoidance
algorithm, we give examples as shown in Fig. 2. Assuming the
bandwidth of each link is c , the fixed power of each switch is
a and the power of each port is b. Suppose there are two flow
requests: f 1(h1 → h6), f 2(h4 → h8). In order to simplify the
representation, we assume that the two flows have the same size,
i.e.,m. As shown in Fig. 2(a):without avoiding link sharing, the path
planned for the two flows is: f 1(h1 → s9 → s5 → s1 → s7 →

s11 → h6), f 2(h4 → s10 → s5 → s1 → s7 → s12 → h8). As
shown in Fig. 2(b): avoiding link sharing, the path of the two flows
is: f 1(h1 → s9 → s5 → s1 → s7 → s11 → h6), f 2(h4 → s10 →

s5 → s2 → s7 → s12 → h8).
Table 2 shows the time, power and energy consumption of the

twopath planningmethods in Fig. 2.When calculating the network
energy consumption, we only consider the activated switches. As
shown in Table 2, the transmission time of the two flows planned
by the link sharing avoidance algorithm is m

c , because they do
not share links and the bandwidth is c. The transmission time
of the two flows planned by the link sharing without avoidance
algorithm is 2∗m

c , because they share links, the bandwidth is c
2 . By

calculating the number of activated switches and links, link sharing
avoidance algorithm and link share without avoidance algorithm
need m

c ∗ (8a + 24b) and 2∗m
c ∗ (7a + 20b) energy consumption to

transmit two flows, respectively. Obviously, link sharing avoidance
algorithm consumes less energy.

4.2. Switch aggregation algorithm

According to the analysis of the energy consumption of switch
in Section 3, we find that the fixed energy consumption of switch is
much greater than that of port, thus the fixed energy consumption
of switch is also much larger than the link energy consumption.
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Fig. 2. Comparison of path selection between link sharing without avoidance and link sharing avoidance.

Algorithm 1: Link Sharing Avoidance Algorithm.

Input: weighted network graph G; flag flow state is arriving or
finishing state;

Output: updated weighted graph G
1: if state == ’arriving’ then
2: for each i : i ∈ [0, len(path) − 1] do
3: src = path[i];
4: dst = path[i + 1];
5: link = (src, dst);
6: G.link.weight = G.link.weight + Xweight ;
7: end for
8: end if
9: if state == ’finishing’ then

10: for each i : i ∈ [0, len(path) − 1] do
11: src = path[i];
12: dst = path[i + 1];
13: link = (src, dst);
14: G.link.weight = G.link.weight − Xweight ;
15: end for
16: end if

We aggregate the flows to the idle links connected to the activated
switches so as to improve the port utilization of activated switches
and reduce the number of activated switches.

The main idea of switch aggregation algorithm given in Algo-
rithm 2 is to gather traffics to the idle ports on the activated switch
to improve the utilization of switch, by reducing theweight of links
connected to the switch. The path set contains all the paths that
are being transmitted. First of all, the switch aggregation algorithm
obtains all activated switches through the path set. Then, the
algorithm determines whether a link in the network is occupied or
not. If the link is not occupied and the switches at two ends of the
link is activated, the 2a power needs to be consumed to activate the
link, and the linkweight is set to 2∗Pweight . If the link is not occupied
and one of the switches at two ends of the link is activated, the
2a + b power needs to be consumed to activate the link, and the
linkweight is set to Sweight+2∗Pweight . If the link is not occupied and
the switch at two ends of the link is in a state of sleep, 2a+2bpower
needs to be consumed to activate the link, and the linkweight is set
to 2 ∗ Sweight + 2 ∗ Pweight .

To illustrate the advantages of switch aggregation algorithm,
we give the examples as shown in Fig. 3. We assume that the
bandwidth of each link is c , the fixed power of each switch is a and
the power of each port is b. Suppose there are two flow requests,
f 1(h1 → h8) and f 2(h2 → h6). The path planned in the case of
no switch aggregation algorithm is: f 1(h1 → s9 → s5 → s1 →

s7 → s12 → h8), f 2(h4 → s10 → s6 → s3 → s7 → s11 →

h6). The path planned in the case of using the switch aggregation

Table 3
Comparison of time, power and energy consumption between switch aggregation
and non switch aggregation.

Non switch aggregation Switch aggregation

Time consumption m
c

m
c

Power 9a + 24b 8a + 24b
Energy consumption m

c ∗ (9a + 24b) m
c ∗ (8a + 24b)

algorithm is: f 1(h1 → s9 → s5 → s1 → s7 → s12 →

h8), f 2(h4 → s10 → s5 → s2 → s7 → s11 → h6).
Table 3 compares the time, power and energy consumed by

the two flows planned by non switch aggregation algorithm and
switch aggregation algorithm in Fig. 3. As shown in Fig. 3, the
paths planned by the non switch aggregation algorithm and the
switch aggregation algorithm take up the link separately, with
bandwidth of c , thus their transmission times are m

c . We can
find that the switch aggregation algorithm reduces the number of
activated switches by aggregating traffic to an already activated
switch. By calculating the number of activated switches and links,
the non switch aggregation algorithm and the switch aggregation
algorithm need to consume the energy of m

c ∗ (9a + 24b) and
m
c ∗ (8a + 24b) to transmit two flows, respectively. It is clear that
the switch aggregation algorithm consumes less energy than the
non switch aggregation algorithm.

4.3. Heuristic algorithm

In SDN, data plane and control plane are separated and com-
municated by OpenFlow protocol. Once a switch finds a new flow
arriving and there is no corresponding matching rule, the switch
sends messages to the controller immediately. Subsequently, the
controller plans a path for the flow based on the network topology
information collected, and then sends the rules to the correspond-
ing switch.

In this subsection, we propose a heuristic algorithm, called
Integrated Time and Power (ITP) algorithm as given in Algorithm
3. The main idea of ITP algorithm is to avoid link sharing in time
dimension and switch aggregation in power dimension, so as to
improve the utilization of switches and achieve the purpose of en-
ergy saving in path planning. Specifically, at first, the ITP algorithm
detects that whether triggering event is a new flow arriving or the
previous flow finishes transmission. If it is a new flow arriving,
the Dijkstra algorithm is called to plan a minimum weight path
according to the current network state. The weight of the path
reflects the energy consumption of the path, so the minimum
weight path is the minimum energy consumption path. Then, ITP
algorithm adds the path to activate path set, calls link sharing
avoidance algorithm, and increases the weight of the occupied link
to avoid sharing links with other flows. Furthermore, the switch
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Algorithm 2: Switch Aggregation Algorithm.

Input: weighted topology of network G; set of paths for all flows
paths;

Output: updated weighted graph G
1: for each path : path ∈ paths do
2: for each i : i ∈ [0, len(path) − 1] do
3: node = path[i];
4: if node not in AcctiveNodes then
5: AcctiveNodes = AcctiveNodes + {node}
6: end if
7: end for
8: end for
9: for each link : link ∈ G.link do

10: if link.src ∈ AcctiveNodes and link.dst ∈ AcctiveNodes then
11: if link.weight < Xweight then
12: link.weight = Pweight
13: end if
14: end if
15: if link.src ∈ AcctiveNodes or link.dst ∈ AcctiveNodes then
16: if link.weight < Xweight then
17: link.weight = Sweight + 2 ∗ Pweight
18: end if
19: end if
20: if link.src /∈ AcctiveNodes and link.dst /∈ AcctiveNodes then
21: if link.weight < Xweight then
22: link.weight = 2 ∗ Sweight + 2 ∗ Pweight
23: end if
24: end if
25: end for

Fig. 3. Comparison of path selection between non switch aggregation and switch
aggregation.

aggregation algorithm is called to reduce the weight of idle links
on active switches, so that other flows are more willing to pass

those links. If a previous flow finishes transmission, then the link
sharing avoidance algorithm is called to recover the link’s original
weight and release the occupied link. Subsequently, the switch
aggregation algorithm is used to recalculate activated switches
and adjust the link weight according to the new set of activated
switches.

Algorithm 3: Integrated time and power algorithm.

Input: weighted topology of network G; a new arriving flow or a
finished flow f ;

Output: a path for f
1: src = f .src, dst = f .dst;
2: if flow f is a new arriving flow then
3: path = dijkstra(G, src, dst);
4: paths[(src, dst)] = path;
5: ResetPathWeight(path,′ arriving ′);
6: ResetGraphWeight(paths,G);
7: end if
8: if flow f is a finished flow then
9: ResetPathWeight(path,′ finishing ′);

10: paths = paths − {path};
11: ResetGraphWeight(paths,G);
12: end if

Next, we give the complexity analysis of our proposed algo-
rithms. It is assumed that there are l links, n nodes, and m flow
requests in the network. It is not difficult to find that, in the worst
case, the time complexity of the algorithm is O(4n + nlog(n) +

3mn + 5l) when a new flow arrives, and the time complexity is
O(4n + 3mn + 5l) when a flow completes the transmission.

5. Performance evaluation

In this section, we will first evaluate the gap between our pro-
posed heuristic algorithms and the optimal solution (generated by
the Optimal Solution Greedy (OSG) algorithm) in a small network.
Thenwe compare the ITP algorithmwith BEERS algorithm [16] and
the heuristic algorithm proposed in [11], which is called Smallest
Closed Sets (SCS) algorithm in this paper. The main purpose of SCS
algorithm is to reduce power by aggregating traffic to the mini-
mum set of network elements to achieve saving energy. The BEERS
algorithm avoids link sharing by exclusive routing and improves
the switch and link utilization by prioritizing the flow with mini-
mum activation time. Finally, we compare these two algorithms in
large-scale networks.

5.1. Experiment settings

Operating environment: (1) Hardware configuration: 3.1 GHz
CPU, i7-5557U processor, and 4G RAM. (2) Software configura-
tion: We utilize Mininet [17] and Ryu controller [18] to build
SDN network environment, and the communication protocol is
OpenFlow1.3 [30]. They are implemented in theUbuntu.04 system.

Network topology: Our topology is as follows: (1) We evaluate
the gap between the optimal solution and the heuristic algorithm
in the classical Fat-Tree data center topology. Each switch has 4
ports, so the topology contains 20 switches and 16 servers. (2)
We evaluate the performance of ITP algorithm and SCS algorithm
in three different data center network topologies, i.e., Fat-Tree,
Blocking Fat-Tree, and VL2. Three topologies are shown in Fig. 4.
(3) In order to evaluate the energy saving performance of ITP
algorithm in large-scale networks,we adopt Fat-Tree topology, and
each switch has 6 ports, so the topology contains 45 switches and
128 servers.

Traffic generation: In this experiment, traffic requests follow
Poisson distribution. The source and destination nodes of each
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Fig. 4. Topology of Data Center.

request are randomly selected. All flows are generated instanta-
neously, and the interval between flows is close to zero. Different
numbers of flows simulate different network loads. The bandwidth
of the flow depends on the bottleneck link in the planned path.
The size of all flows is a constant, which is a different value in
the following different tests. The service time of a flow depends
on the size of the flow, the bandwidth of the flow, and the quality
of the links on the planned path. We use iperf [31] to generate real
network traffic to evaluate the performance of the algorithmunder
varying traffic size and quantity.

Number of iterations: Suppose there are n flows in the net-
work. The OSG algorithm explores and compares all possible solu-
tions to find the best solution with an iteration count of n!. The
ITP algorithm, BEERS algorithm and SCS algorithm are triggered
only when a new flow arrives or a previous flow finishes the
transmission. Therefore, they are first-come-first-served, and the
number of iterations of both algorithms is n.

Energy parameter: We set the parameters used in the ex-
periment as shown in Table 4. Each switch has a fixed power of
48 W, and the power of each switch port is 4 W [32]. The weight
proportion coefficient α, β , γ and δ are set to 1, 1, 10 and 20,
respectively.

Performance index: We define Etotal as the network energy
consumption without using the energy saving algorithm, Eactual
represents the actual network energy consumption using the en-
ergy saving algorithm, and Esaved represents the energy saved by
the energy saving algorithm.We define the energy saving percent-
age, denoted by ESP:

ESP =
Esaved
Etotal

× 100% = (1 −
Eactual
Etotal

) × 100%

5.2. Comparison of optimal results

We evaluate the gap between the solution of the ITP algorithm
and the optimal solution. The optimal solution is generated by
the simplest optimal solution greedy (OSG) algorithm. The OSG
algorithm explores and compares all possible solutions to find the

Table 4
Parameter setting.
Parameter Value

a(u, v) 4 W
b(u) 48 W
α 1
β 1
γ 10
δ 20

optimal solution. In the experiment, we compare the computa-
tional delay between ITP algorithmandOSGalgorithm, and explore
the difference between the two algorithms.

As shown in Fig. 5(a), we find that the energy saving perfor-
mance of the ITP algorithm and the OSG algorithm are the same
in most cases, and the maximum gap between the two algorithms
is less than 1%. Moreover, the energy saving percentage of the
two algorithms are more than 60%. Therefore, the solution of the
heuristic ITP algorithm can well approximate the optimal solution
of theOSG algorithm, andhas a goodperformance of energy saving.
The difference between the ITP algorithm and the OSG algorithm
is that the ITP algorithm uses a first-come first-served strategy
instead of searching for the optimal scheduling order of the process
scheduling.

As shown in Fig. 5(b), we find that there is a great gap between
the ITP algorithm and the OSG algorithm in terms of computing
time. The ITP algorithm needs less than 50 ms when processing
6 flows, while the OSG algorithm needs 17.155 s. This is because
the OSG algorithm needs to compare all possible solutions, while
ITP uses a first-come, first-served flow processing approach.When
the number of flows is 6, the iterations of OSG algorithm and ITP
algorithm are 6! and 6 respectively.

5.3. Performance comparison in different network topologies

In order to evaluate the energy saving performance of ITP al-
gorithm in realistic data centers, we use Mininet to create three
typical data center topologies, i.e., Fat-Tree, Blocking Fat-Tree and
VL2, as shown in Fig. 4. Moreover, we utilize RYU as a controller to
monitor the data plane. We use iperf tool [31] to generate traffics
with the size of 64M (typical traffic size in a data center) [33]. In
the experiment, we compared the transmission time and energy
consumed by all flows to complete the transmission using the ITP
algorithm, BEERS algorithm and SCS algorithm. Limited by the PC’s
RAM is only 4G, without loss of generality, we let the number of
flow vary from 10 to 50.

Fig. 6 depicts the performance changes in the completion time
of the ITP algorithm, BEERS algorithm and SCS algorithm in the
three data center topology, as the number of flows changes. As
shown in Fig. 6(a), the transmission time of three algorithms in-
creases when the number of flows increases. The reason under
the observation is as follows. For ITP algorithm and SCS algorithm,
there exist more flows in the network, resulting in more network
bottlenecks and bandwidth reduction. For BEERS,more flowsmean
more queueing delays. In addition, the transmission time of ITP
algorithm is very close to that of BEERS algorithm, and both of
them are superior to SCS algorithm. Specifically, in the Fat-Tree
network, the ITP algorithm and the BEERS algorithm reduce the
transmission time by 36.88% and 26.98% on average compared
to the SCS algorithm. This is because ITP algorithm and BEERS
algorithm avoid sharing links by link sharing avoidance and exclu-
sive routing respectively, so that the link utilization is improved.
Similar results are shown in Fig. 6(b) and (c).

In the Blocking Fat-Tree network, the ITP algorithm and the
BEERS algorithm on average reduce the transmission time by
24.99% and 22.14% compared with the SCS algorithm. This means
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Fig. 5. Comparison of our ITP algorithm and the OSG algorithm.

Fig. 6. Total flow completion time of our heuristic ITP algorithm, BEERS algorithm and the SCS algorithm against different flow number in Fat-Tree, Blocking Fat-Tree and
VL2 networks.

that the transmission time performance of the ITP algorithm and
the BEERS algorithm in the Blocking Fat-Tree network is inferior to
that in the Fat-Tree network. This is because the Fat-Tree network
has fewer core switches and redundant links, so that fewer alter-
native paths can be used to avoid sharing links. In the VL2 network,
the ITP algorithm and the BEERS algorithm on average reduce the
transmission time by 25.68% and 32.91% compared with the SCS
algorithm. This result is better than Blocking Fat-Tree, second to
Fat-Tree, because VL2 networks have more redundant links than

Blocking Fat-Tree networks, but have fewer redundant switches
than Fat-Tree networks.

Fig. 7 shows the energy consumption used to transmit all the
flows against different number of flows in the Fat-Tree, Blocking
Fat-Tree and VL2 networks. In the three kinds of networks, the
energy consumed by the ITP algorithm, BEERS algorithm and SCS
algorithm increases as the number of flows increases, because
more switches need to be activated and their activation time needs
to be extended to transmit increased traffic. In Fig. 7(a), we find
that the ITP algorithm on average consumes 13.29% less energy
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Fig. 7. Energy cost of our heuristic ITP algorithm, BEERS algorithm and the SCS algorithm against different flow number in Fat-Tree,Blocking Fat-Tree and VL2 networks.

than the BEERS algorithm in the Fat-Tree network. The results
show that ITP algorithm has better performance of power saving
than BEERS algorithm, although they have similar transmission
time. Since the ITP algorithm plans a path with lower power for
the flow than the BEERS algorithm. Besides, the ITP algorithm on
average reduces energy consumption by 30.25% compared to the
SCS algorithm. This result demonstrates that the ITP algorithm
consumes less energy than the SCS algorithm because the ITP algo-
rithm greatly reduces transmission time by avoiding link sharing,
although the ITP algorithm consumes more power than the SCS
algorithm.

Fig. 7(b) and (c) show the results in Blocking Fat-Tree and
VL2 network, with slightly different energy cost due to different
topologies. In the Blocking Fat-Tree network, the ITP algorithm
reduces energy consumption by an average of 16.32% compared
to the BEERS algorithm, which is better than the energy sav-
ing in the Fat-Tree network, because fewer switches mean more
opportunities for switch aggregation. The ITP algorithm reduces
energy consumption by an average of 23.73% compared to the
SCS algorithm, which is inferior to the result in Fat-Tree network,
because the Blocking Fat-Tree network has fewer redundant links
for avoiding sharing. In the VL2 network, the ITP algorithm saves
9.68% and 14.71% of energy, respectively, compared to the BEERS
algorithm and the SCS algorithm, which is second to Fat-Tree and
Blocking Fat-Tree. Because there are only two core switches in the
VL2 network, there are eight links between the core layer and the
aggregation layer, which results in most of the energy saved is
the link energy consumption. However, the energy consumed by
the links is much less than the energy consumed by the switches,
occupying a small fraction of the total energy consumption.

5.4. Performance comparison in large-scale networks

In this section, we evaluated the performance of our heuristic
ITP algorithm for energy consumption and transmission time in
large networks. The network topology we evaluated is a Fat-Tree
topology with 6 ports per switch, including 128 servers, and 45
switches. First, we test the performance of the ITP algorithm with
a given flow size (64M) and variable number of flows, as shown in
Fig. 8. Then, we evaluate the performance of the ITP algorithm for a
given number (30 flows) of flows and variable flow size, as shown
in Fig. 9.

As shown in Fig. 8(a), the transmission time by ITP algorithm,
BEERS algorithm and SCS algorithm is naturally prolonged with
the increase of the number of flows. In addition, the ITP algorithm
and BEERS algorithm are much better than the SCS algorithm in
large-scale networks. This is because there are more redundant
links in large-scale networks, so that more optional paths can be
used to avoid link sharing and exclusive routing. Moreover, we
can observe from Fig. 8(b) that with the increase of the number of
flows, the energy consumption of ITP algorithm, BEERS algorithm
and SCS algorithm significantly increase, owning to more flows
need to be transmitted. Furthermore, the ITP algorithm always
consumes less energy than the BEERS algorithm and SCS algorithm
for different number of flows. As the number of flows increases, the
ITP algorithm saves much more energy than the BEERS algorithm
and SCS algorithm, because increased flows in the network provide
ITP more opportunities to use switch aggregation algorithm and
link sharing avoidance algorithm.

As shown in Fig. 9(a), as the size of flows increases, the trans-
mission time of the three algorithms is increased. This is because
the increase of flow size prolongs the bottleneck link duration in
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Fig. 8. Comparison of total flow completion time and energy cost against different flow number in Fat-Tree networks with 128 servers.

Fig. 9. Total flow completion time and energy cost against flow size in 128 servers Fat-Tree networks.

SCS algorithm and ITP algorithm, and the queueing time of BEERS
algorithm. In addition, ITP algorithm and BEERS algorithm have
similar transmission time, while the gap between SCS algorithm
and ITP algorithm increases gradually with the increase of flow
size. This result demonstrates that link sharing avoidance in the ITP
algorithm has a more significant advantage on transmission time
when the size of the flow is larger. We can observe from Fig. 9(b)
that network devices consume more energy when traffic is larger
and more bits need to be transmitted. Besides, the ITP algorithm
consumes less energy than the SCS algorithm and BEERS algorithm
for different traffic sizes.

6. Conclusions

In this paper, we study the problem of combining the two
dimensions of time and power to achieve the purpose of energy
saving in data center networks. We first analyze the character-
istics of energy consumption in the network and formulate the
Minimum Network Energy Consumption (MNEC) problem. Subse-
quently, the MNEC problem is proved to be a NP-hard problem.
Therefore, we design a heuristic algorithm called Integrated Time
and Power (ITP) combining link sharing avoidance algorithm and
switch aggregation algorithm, which can avoid the link sharing
and improve the link utilization from the dimension of time while
improving the utilization of the switch port from the dimension
of power so as to achieve the purpose of energy saving. Finally,

extensive experiments show that ITP heuristic algorithmhas better
energy saving and transmission delay performance under different
network topologies and different network traffic sizes and quanti-
ties.
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