Journal Pre-proof

Walking on two legs: Joint service placement and computation Eﬁm ter
configuration for provisioning containerized services at edges u ﬁfw rks
e

O

Tuo Cao, Qinhui Wang, Yuhan Zhang, Zhuzhong Qian, Yue Zeng,
Mingtao Ji, Hesheng Sun, Baoliu Ye

PIL: S1389-1286(23)00589-3
DOI: https://doi.org/10.1016/j.comnet.2023.110144
Reference: COMPNW 110144

To appear in: ~ Computer Networks

Received date: 20 June 2023
Revised date: 15 November 2023
Accepted date: 15 December 2023

Please cite this article as: T. Cao, Q. Wang, Y. Zhang et al., Walking on two legs: Joint service
placement and computation configuration for provisioning containerized services at edges,
Computer Networks (2023), doi: https://doi.org/10.1016/j.comnet.2023.110144.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the
addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive
version of record. This version will undergo additional copyediting, typesetting and review before it
is published in its final form, but we are providing this version to give early visibility of the article.
Please note that, during the production process, errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

© 2023 Published by Elsevier B.V.

https://doi.org/10.1016/j.comnet.2023.110144
https://doi.org/10.1016/j.comnet.2023.110144

Walking on Two Legs: Joint Service Placement and Computation Configuration for
Provisioning Containerized Services at Edges

Tuo Cao, Qinhui Wang, Yuhan Zhang, Zhuzhong Qian, Yue Zeng, Mingtao Ji, Hesheng Sun, Baoliu Ye

Abstract

With the development of edge computing and container virtualization, provisioning containerized services at network
edges is proposed for high responsiveness and low wide area network (WAN) traffic. However, realizing its full potential
faces multiple challenges. First, due to containers’ fine-grained computation resource isolation, finely configuring services’
computation resource requirements is needed, especially for resource-constrained edge nodes. Second, due to edges’
heterogeneity and services’ diversity, system performance highly depends on which edge node to place each service.
Third, as the main metric of quality of service, service response time involves the computing-network delay tradeoff and
urges to optimize the decisions jointly. Prior works on edge-enabled service placement either ignore computation resource
isolation and configuration, or assume computation resource configuration is given manually. To fill this gap, this paper
investigates the joint service placement and computation configuration problem for provisioning containerized services
at edges. Then based on the convex and submodular optimization techniques, we propose a two-stage greedy and local-
search combined algorithm, TeLa for short. Rigorous theoretical analyses demonstrate that TelLa is a polynomial-time
algorithm with performance guarantees. Finally, we implement twelve containerized services and an edge computing
prototype to realistically evaluate TeLa. The results confirm TeLa’s empirical superiority over state-of-the-art algorithms,

in terms of 39% on average reduction on the weighted sum of service response time and WAN traffic.

Keywords:

Containerized Service Provisioning, Edge Computing, Service Placement, Computation Configuration

1. Introduction

With the rapid development of container virtualization
technologies, Container as a Service (CaaS) has emerged as
a promising service model [1, 2, 3]. Unlike each virtual ma-
chine owning an entire operating system, containers share
the system kernel with the host machine and encapsulate
only the required libraries and tools. Thus, in addition
to achieving runtime and resource isolation, containers ac-
quire the advantages of fast launch, low overhead, easy
deployment and migration, etc. Currently, representative
CaaS platforms include Amazon Elastic Container Service
[4], Google Kubernetes Engine [5] and Azure Container In-
stances [6]. Meanwhile, edge computing, which pushes the
computing services from the cloud to the network edges, is
proposed to mitigate the burden of cloud computing, i.e.,
long service response times and enormous wide area net-
work (WAN) traffic [7, 8]. Evolution of the two prompts to
implement services as containers and provision container-
ized services at network edges [9, 10, 11, 12].

T. Cao, Y.H. Zhang, Z.Z Qian, Y. Zeng, M.T. Ji, H.S. Sun
and B.L. Ye are with the State Key Laboratory for Novel Software
Technology, the Department of Computer Science and Technology,
Nanjing University, Nanjing Jiangsu 210023, China.

Q.H. Wang is with the Department of Military Training and
Management, Army Command College, Nanjing Jiangsu 210045,
China.

The corresponding author is Zhuzhong Qian (qzz@nju.edu.cn).

Computer Networks, Manuscript is under Review

Since managing containers at edges is still in its in-
fancy [13] and Kubernetes (K8s) is the leading container
orchestrator for cloud environments [14], practitioners usu-
ally adopt a K8s-like tool (e.g., MicroK8s [15], KubeEdge
[16] and K3s [17]) to manage the edge-hosted container-
ized services. To be specific, they would first manually and
empirically configure the amounts of resources that each
containerized service exclusively occupies. The resource
amounts, also called the resource requirements, are used
for resource isolation among different services. Second, the
K8s-like tool would place the containerized services onto
the edge nodes, which is mainly according to services’ re-
source requirements and nodes’ resource capacities.

Such a containerized service provisioning scheme may
work well for the cloud, but not for the edges. Firstly,
edges’ computation resources are scarce and containers’
computation resource isolation is fine-grained, i.e., in pro-
cessor percentages rather than numbers. They urge to
finely configure the computation resource requirements of
containerized services (computation configuration), but the
manual method is coarse-grained and wastes the resources.
Fig. 1 is the analysis result obtained from Alibaba Group
[18] and reveals the computation resource wastes. Sec-
ondly, edges are heterogeneous in resource capacities and
access delays, and services are diverse in resource require-
ments and workloads. Besides, when edges are overloaded,
the remaining services must stay at the cloud, bearing long

November 15, 2023

=—e— Alibaba-2017
—a— Alibaba-2018
=—o— Alibaba-2021

0.0 T T T T T T T T T
0 10 20 30 40 50 60 70 80 90 100

CPU Utilization (%)

Fig. 1: CPU utilization of containerized services in Alibaba data
centers in recent years [18], showing that more than 80% of its con-
tainerized services have average CPU utilization less than 30%.

network delays and incurring monetary expenses for WAN
traffic [19, 20, 21]. Tt falls short to only consider resources
when deciding which node to place each containerized ser-
vice (service placement). Lastly, computation configura-
tion and service placement decisions are coupled but the
two-step manner fails to capture it. For instance, config-
uring large computation resource requirements in the first
step leads to low computing delays but may push services
to stay at the cloud in the second step, increasing net-
work delays. Hence, to make a computing-network delay
tradeoff, the two decisions should be jointly optimized.
Overcoming these limitations raises the joint service
placement and computation configuration problem, which
is challenging to solve. On the one hand, service placement
decisions are binary values, and computation configuration
decisions are continuous values because of containers’ fine-
grained computation resource isolation. However, edges’
limited computation resources and the computing-network
delay tradeoff couple the two decisions deeply, in the sense
that both their feasible sets and the performance metric
(i.e., service response time) are hard to be separated with
respect to them. It is challenging to decompose and re-
solve such problems [22]. On the other hand, with edges’
heterogeneity and services’ diversity considered, the ser-
vice placement problem alone is hard to efficiently solve
[23, 24], not to mention the joint optimization problem.
Existing works fall insufficient for handling these chal-
lenges. Some works focus on edge-enabled service place-
ment or together with request scheduling [25, 26, 27, 28,
29, 30, 31, 32, 11, 12], but they neglect the service-level
computation resource isolation and configuration. Some
incorporate the isolation and configuration when placing
services [23, 24, 33, 34, 35, 36, 37]. However, they assume
the computation configuration is given manually or preset
simply. A few works optimize service-level computation
configuration [38, 39, 40, 41], but they assume each edge
node hosts all services, or consider only one edge node.
To fill this gap, this paper investigates the compelling
but less studied problem of joint service placement and
computation configuration for provisioning containerized
services at edges. Specifically, we aim at an edge comput-
ing system with multiple edge nodes and a remote cloud,
which provides containerized services for users in a serv-
ing region. With containers’ fine-grained computation re-

source isolation, edges’ heterogeneity and services’ diver-
sity taken into account, we strive to minimize the weighted
sum of service response time and WAN traffic, under mul-
tidimensional resource constraints. This problem is formu-
lated as a mixed integer nonlinear program and proved to
be NP-hard via the generalized assignment problem [42].

To handle the deep coupling relationship of the two de-
cisions, we first apply an inner-and-outer problem model
and decompose the joint problem into a computation con-
figuration problem (inner) and a service placement prob-
lem (outer). Rigorous analyses show that such decompo-
sition is nondestructive and lossless. We then prove the
inner problem to be convex and obtain its closed-form so-
lution through the Karush-Kuhn-Tucker conditions. After
bringing the solution into the outer problem and making
some arrangements, we prove the outer problem to be max-
imizing a submodular but non-monotone function over a p-
independence system. To settle its NP-hardness, we raise
a two-stage greedy and local-search combined algorithm,
TeLa for short. It generates relatively good solutions via
the greedy policy in the first stage and adjusts them via
the local-search policy in the second stage. At last, we
prove that Tela is a piégﬁ—approximation algorithm for
the joint problem and runs in polynomial time.

Upon Java 11 and Docker [43], we implement twelve
diverse containerized services and an edge computing pro-
totype with four heterogeneous edges, as the testbed. We
compare TeLa with state-of-the-art algorithms under vari-
ous scenario settings. The results show that regarding the
weighted sum of service response time and WAN traffic,
TeLa outperforms the baselines by 39% on average and
achieves near-optimal performance. Simulations in larger
scales (more than 20 edges and 100 services) are also con-
ducted and the results verify its scalability and efficiency.

The rest of this paper is organized as follows. In Section
2, we review the related works from two categories. Section
3 models the system and formulates the joint optimization
problem. Section 4 presents the proposed algorithm TeLa
and analyzes its performance. We evaluate TeLa through
both testbed experiments and simulations in Section 5,
and finally conclude this paper in Section 6.

2. Related Work

In recent years, provisioning services at network edges
has been a hot topic and its service placement problem
has drawn researchers’ attention [44, 45, 46]. This section
reviews the most related works from two categories and
highlights the differences between their studies and ours.

2.1. Edge-enabled Service Placement without Computation
Configuration

Works in this category optimize service placement at
network edges while ensuring the actually used computa-
tion resources beneath the capacities. For example, Lia et
al. [25] investigate this problem to minimize the exchanged

Table 1: Summary for Works on Edge-enabled Service Placement without Computation Configuration

Ref. | Workload Type Technique Optimization Criterion Evaluation Tool
[25] General Services Supervised Learning Exchanged Intra-domain Traffic Trace-driven Simulation
[26] General Services Gibbs Sampling User Request Delays Trace-driven Simulation
[27] General Services Lyapunov Optimization, Computation Latencies Synthetic Simulation

Gibbs Sampling
28 General Services Randomized Rounding Number of Edge-served Requests Synthetic Simulation
29 General Services Submodular Optimization Number of Edge-served Requests Trace-driven Simulation
30 General Services Submodular Optimization Number of Edge-served Requests Trace-driven Simulation
31 Live Streaming Deep Reinforcement Learning | QoE Penalty, System Cost Penalty | Trace-driven Simulation
32 Live Streaming Heuristics Popularity-weighted Video Quality | Trace-driven Simulation
11 Container-based Approximately Submodular Number of Edge-served Requests Trace-driven Simulation
Microservices Optimization
[12] Container-based Heuristics Service Latency Cost, Container Trace-driven Simulation
Microservices Retention Cost

intra-domain traffic and explore the performance of several
supervised learning techniques. Dou et al. [26] study the
server placement and service placement problem to mini-
mize the user request delay while Xu et al. [27] study the
service placement and task offloading problem to minimize
the computation latency. Besides, some works jointly op-
timize service placement and request scheduling to maxi-
mize the number of edge-served requests. In this direction,
Poularakis et al. [28] propose a randomized rounding al-
gorithm, He et al. [29] and Farhadi et al. [30] respectively
design the greedy service placement (GSP) algorithm upon
submodular optimization. In addition, some works focus
on live streaming services and explore the video place-
ment and viewer scheduling problem, where video streams
may be real-timely transcoded by edge nodes. In this
field, Wang et al. [31] raise a deep reinforcement learn-
ing algorithm to minimize the penalty of quality of expe-
rience (QoE) and system cost, while Lee et al. [32] raise
a heuristic to maximize popularity-weighted video qual-
ity. Moreover, as the container virtualization technology
develops, some researchers note containers’ features and
optimize containerized service provisioning at edges. For
instance, Gu et al. [11] leverage the layered structure of
container images and optimize service placement and re-
quest scheduling to maximize the number of edge-served
requests. Noting containers’ startup latencies, Pan et al.
[12] raise a retention-aware service caching method to min-
imize service latency cost and container retention cost.

A comprehensive comparison of these works, in terms
of the workload type, the technique, the optimization cri-
terion and the evaluation tool, is summarized in Table 1.
However, since they ignore the service-level computation
resource isolation and configuration, services on the same
node practically influence each other, which impairs the
quality of service and even causes service crashes.

2.2. Edge-enabled Service Placement with Computation
Configuration

Works in this category optimize service placement at
network edges, with the service-level computation resource

isolation and configuration taken into account. From the
perspective of algorithm design, Pasteris et al. [23] study
this problem for a heterogeneous edge computing system
and propose a heuristic to maximize the total system re-
ward. Ouyang et al. [24] further observe the user mobility
and the service migration cost, and propose an online al-
gorithm to minimize the user-perceived latency within a
service migration cost budget. Besides, Ma et al. [33] op-
timize service placement and workload scheduling to min-
imize service response time and outsourcing traffic, and
develop an iterative caching update algorithm based on
the idea of Gibbs sampling (GS) and water filling. Cao et
al. [34] focus on the service placement and bandwidth
allocation problem for edge-assisted mobile cloud gam-
ing, and present an online algorithm to minimize the QoE
impairment on network delays and frame rates. From
the perspective of system design, Goethals et al. [35]
present a Kubernetes-compatible edge container orches-
trator to place containerized services on low-resource edge
devices. Similar works include KubeEdge [16], K3s [17]
and MicroK8s [15]. However, they all assume computa-
tion configuration is given manually by service providers,
which usually wastes the computation resources. Addi-
tionally, Ouyang et al. [36] consider edge nodes’ computa-
tion resources are evenly allocated to their hosted services,
and optimize user-managed service placement to minimize
user-perceived latencies and service switching cost. Li et
al. [37] force each computing task to occupy one comput-
ing unit and raise an improved ant colony algorithm to
place services to minimize the service response delay.
Note that there are a few works studying the service-
level computation configuration problem for edge comput-
ing. For example, Xiang et al. [38] optimize computation
configuration and traffic scheduling to minimize service re-
sponse times within a computing expense budget, and Fan
et al. [39] optimize computation configuration and request
assignment to minimize service response times for Internet
of things. Nevertheless, they assume each edge node hosts
all services regardless of edges’ memory and storage ca-
pacities, which is oversimplified and unrealistic. Moreover,

Table 2: Summary for Works on Edge-enabled Service Placement with Computation Configuration

Ref.| Workload Type Computation Technique Optimization Evaluation Tool
Configuration Criterion
(23] General Services Given Manually Heuristics System Reward Synthetic Simulation
[24] General Services Given Manually Lyapunov Optimization, User-perceived Trace-driven
Markov Approximation Latencies Simulation
[33] General Services Given Manually Gibbs Sampling, Convex Response Times, Synthetic Simulation
Optimization Outsourcing Traffic

[34] Mobile Cloud Given Manually Lyapunov Optimization, QoE on Network Trace-driven
Gaming Markov Approximation Delays, Frame Rates Simulation

[35] Container-based Given Manually OpenVPN, Containerd, Resource Testbed Experiment
Services Namespace, Cgroup Requirements

[36] General Services Shared Evenly Contextual Multi-armed Perceived Latencies, | Synthetic Simulation

Bandit, Thompson Sampling Switching Cost
[37] General Services One Unit for Ant Colony Optimization Response Delays Synthetic Simulation
One Task

[38] General Services Optimized Lyapunov Optimization Response Times Synthetic Simulation

[39] | Internet of Things Optimized Convex Optimization Response Times Synthetic Simulation

[40] Augmented Optimized Successive Convex Device Energy Synthetic Simulation
Reality Approximation Consumption

[41] General Services Optimized Dynamic Voltage and Latencies, SLO Testbed Experiment

Frequency Scaling Violation Ratios

Al-Shuwaili et al. [40] allocate computation resources to
minimize device energy consumption for augmented real-
ity applications, while Nam et al. [41] present Edgelso, a
light-weight scheduler that dynamically isolates tasks on
edges, to minimize task latencies and service level objec-
tive (SLO) violation ratios. However, they consider only
one edge node, instead of multiple heterogeneous edges.

In Table 2, we summarize a side-by-side comparison of
these works, where the aspects include the workload type,
the computation configuration method, the technique, the
optimization criterion and the evaluation tool.

Different from all previous works, besides the edges’
heterogeneity and the services’ diversity, this paper further
considers containers’ fine-grained computation resource iso-
lation, and investigates the joint service placement and
computation configuration problem for provisioning con-
tainerized services at edges. To the best of our knowledge,
this is the first work that specializes in this issue. More-
over, we propose a polynomial-time approximation algo-
rithm for this joint problem and evaluate the algorithm
through both testbed experiments and simulations.

3. System Model and Problem Formulation

In this section, we build the system model for provision-
ing containerized services at edges and formulate the joint
service placement and computation configuration problem
in detail. For ease of reference, we summarize the main
notations used in this paper in Table 3.

3.1. System Overview

As illustrated in Fig. 2, we consider an edge comput-
ing system that provides diverse computing services for

the users or end devices in a specific serving region. To be
precise, the system consists of 1) a set A/ of heterogeneous
edge nodes, deployed at the network edge and equipped
with limited resources; and ii) a remote cloud o, composed
of massive powerful servers and located far at the core
network. They constitute the computing infrastructure
for a system operator to deploy a set S of delay-sensitive
but computing-intensive services, e.g., object detection,
language translation, etc. In order to benefit from the
container virtualization technology, the services are im-
plemented as containers (namely, containerized services),
instead of directly running on physical or virtual machines.
Furthermore, each user or end device stochastically gener-
ates requests for some services, and transmits them to the
edge node or the cloud that is hosting the corresponding
service to get served. Finally, as for the serving region, it
may be a manufacturing factory, a shopping mall, a rail-
way station or other similar areas in practice.

Note that as time goes by, the system status, including
service workloads, network delays, edge node availability,
etc., may change stochastically or abruptly in reality. In
order to adapt to the system dynamics, existing works ei-
ther: i) adopt the slot-structured timeline and update their
decisions every some time duration (e.g., a few minutes or
more) [24, 30, 34]; or ii) adopt the event-triggering scheme
and update their decisions when some predefined events
(e.g., severe resource contentions) are detected [31, 41, 47].
Generally speaking, the time duration between two suc-
cessive decision updates ranges from several minutes to
hours, depending on the specific scenario. Following ex-
isting works [11, 25, 32, 37], this paper leaves the issue of
determining when to update decisions to the system opera-
tor, and focuses on the service placement and computation
configuration problem itself.

Table 3: Summary of Main Notations

Symbols | Description
N/S Set of edge nodes/containerized services
Cn/My, Computation/memory capacity of edge node n
Gn/Bn Storage/bandwidth capacity of edge node n
ms/gs Memory/storage requirement of service s
do/dn Network delay for communicating with remote
cloud o/edge node n
Qs Expected computation resource demand (in
CPU cycles) per request for service s
Bs Expected data size per request for service s
As Expected arrival rate of requests for service s
Co Amount of computation resource that is allo-
cated to a cloud-served request
D, /T, Service response time/WAN traffic per request
for service s
w Weight parameter for balancing service re-
sponse time and WAN traffic
Decision | Description
Ts,n Binary variables, indicating whether service s
is placed at node n (zs,, = 1) or not (zs,, = 0)
Ys Continuous variables, specifying the computa-
tion resource amount configured for service s
(when placed on edges) to exclusively occupy

T Ds is controlled by service placement and computation configu-
ration decisions. T is controlled by service placement decisions.

3.2. Service Placement and Computation Configuration

Typically, the edge nodes together with the cloud are
heterogeneous in resource capacities and access delays, and
the services are diverse in resource requirements and work-
loads. As a consequence, the system performance heav-
ily depends on where the services are placed and how
many computation resources are configured for the ser-
vices to exclusively occupy. We take the binary indicators
T = (Ts,n)ses,neNU{o} tO denote the service placement de-
cision. Definitely, let x5, = 1 if we place service s € S
on node n € M U {o}, and z;, = 0 otherwise. Here, node
n € N'U{o} is short for edge node n if n € A or the cloud
oif n = 0. As each service must be scheduled to one of the
nodes to serve users, we have the following constraints:

ZTLGNU{O} Ton = 1’ Vs 2 S’ (1)
zsn €{0,1},Vs €S, VneNU{o}. (2)

Unlike virtual machines isolating computation resources
among services in the granularity of processor numbers,
the container virtualization technology offers a much finer
granularity, i.e., processor percentages. Intuitively, by tak-
ing advantage of this property, one could place more ser-
vices on resource-limited edge nodes, improving their re-
source utilization and the system performance. Thus, with-
out loss of generality, we take y = (ys)ses to denote the
computation configuration decision. Definitely, it means
the amount of the computation resource exclusively occu-
pied by service s is ys CPU cycles per second. Note that
in this paper, it is for presentation ease to use CPU cycles

ApA- Tasks Waiting in
000 9

Service Queues

\:l Containerized
Services

Cloud/Data Center

-
T
I 2
f%ﬂz‘%m zf)

Serving Requests — WAN

on Cloud

Serving Requests
at Edges (.,

|
=R =i

Users/End Devices

Fig. 2: Provisioning containerized services at edges.

per second as the decision’s unit and we can easily convert
the unit into processor percentages. Therefore, we have

ys >0, VseS. (3)

Furthermore, to avoid the cold startup latency, con-
tainerized services are usually kept in memory with their
exclusively occupied computation and storage resources.
As a result, placing services on edge nodes inevitably con-
sumes the resources of edge nodes, which are yet limited
and scarce. For each edge node n € N, we take C,,, M,
and (G, to denote its computation, memory and storage
capacity, respectively. For each service s € §, its mem-
ory and storage resource requirement could be obtained
through several test runs and we take mgs and g, to repre-
sent them. Since the occupied resources of an edge node
should be upper bounded by the capacities, we have

ZSGS Tsn X Ys S Cn7 n € N? (4)

Z Tsn X Mg < M, Vne N7 (5)
SES

> Ton X s S Guy VnEN. (6)

3.8. Service Response Time and WAN Traffic

In general, the system operator would like to provision
services for users with the best possible quality of service
(QoS) and the minimum possible system cost. Specifically,
for the QoS, a key and widely-used metric is the service re-
sponse time, also known as the user-perceived delay or the
request delay [26, 38, 39]. Meanwhile, when edge nodes
are heavily loaded, some services have to be placed on
the cloud and the user requests for cloud-hosted services
have to be transmitted to the cloud across the WAN. On
this occasion, the system operator has to pay for the WAN
traffic, where the price is usually 0.01~0.15 dollars per GB
[19, 20, 21]. Thus, following [33, 36], this paper also treats
the WAN traffic as the system cost metric, and proposes
to minimize both the service response time and the WAN
traffic. Furthermore, like prior works [27, 48], we consider
that for any service s € S, the arrival of its user requests
follows a Poisson process with expected rate As and the

computation demand per request (in CPU cycles) follows
an exponential distribution with expectation «a,. Besides,
we take s to denote the expected data size per request
for service s, without restricting its probability distribu-
tion. In practice, the values of these parameters could be
estimated or learned by analyzing the latest service log.

When it comes to modeling service response time and
WAN traffic, placing services on edge nodes or the cloud
is quite different. For an edge-hosted service s, the WAN
traffic is zero because its user requests are all served at
the network edge. The response time consists of network
delays, queuing delays and computing delays. Since the
locations of edge nodes may differ, we take d,, to denote
the average network delay for users to communicate with
edge node n. Moreover, the edge serving process could be
treated as an M/M/1 model in the queuing theory [49] and
the expected sojourn time (i e., queuing time plus comput-
ing time) is calculated as TR chcc7 the expected re-
sponse time is)\ 5 n(d + 5= %>;). Stabilizing the
waiting queues yields the followmg constramt

Ys > O‘s)\s» Vs € 87 ZHGN Tsn = 1 (7)
Besides, taking B, to denote the bandwidth capacity of
edge node n, we get the bandwidth resource constraint as

> s Tsn X Asfs < Bn, Yn €N, (8)

Whereas, for a cloud-hosted service s, its user requests
are all transmitted to the cloud through the WAN and the
WAN traffic per request is actually the expected data size,
i.e., Bs. The network delay is mainly sourced from data
propagation across the WAN and we take d, to denote it.
Moreover, although the cloud has a large number of pow-
erful servers, the resources for processing one user request
are bounded, not infinite. Following existing works [50], we
consider that once arriving at the cloud, any user request
is immediately allocated a certain amount of resources for
processing, where the computation resource amount is ¢,.
Therefore, the queuing delay is zero and the expected ser-
vice response time is calculated as x5 o(do + i‘—o)

Hereafter, we take Dy and T to respectively denote
the service response time and the WAN traffic per request
for service s € §. Then, summarizing the two cases yields

D, =
xSO(d + Co + Z‘Tsn(d > _OésAs)’ (9)
neN
T, = Ts,o X Bs. (10)

3.4. Problem Formulation

With containers’ fine-grained computation resource iso-
lation, edges’ heterogeneity and services’ diversity taken
into account, we jointly optimize service placement and
computation configuration for provisioning containerized
services at edges. The objective is to minimize the weighted
sum of total service response time and total WAN traffic,

subject to multidimensional resource constraints of edge
nodes. Such a problem is formulated as follows:

S :min ZA x Dy —l—wZ)\ x Ty
i SES seES

s.t. ZSES

Z 'Z‘SnxmsSMnavneNa

se§ 7’

D s Tan X gs < Gn, Y EN, (1c)

D Ton X AsBs < Bn,Vn €N,
seS 7

X
ZnENU{o} @

Tsn X Ys < C,L,VTL € N’ (13‘)

(1b)

(1d)
=1,Vse S, (le)

(1 - xs,o)ys 2 (1 - xs,o)asAsavs € Sa (1f)
Tsm € {0,1},Vs € S,n € N U{o}, (1g)
Ys =2 0,Vs €S, (1h)

where w is the weight parameter to control the bias be-
tween service response time and WAN traffic. Constraints
(la)~(1d) are the computation, memory, storage and band-
width resource constraints, respectively. Constraint (le)
ensures each service is placed on one edge node or the cloud
and constraint (1f) is equivalent to Eq. (7), which stabi-
lizes the waiting queues of edge-hosted services. Finally,
constraints (1g) and (1h) specify the domains of service
placement and computation configuration decisions.
Challenges to solving & are two-fold. First, with the
presence of Dg, constraint (la) and (1f), service place-
ment decisions and computation configuration decisions
are deeply coupled in the sense that the objective and the
feasible set are both hard to be split with respect to them.
Combining it with their value domains (i.e., binary and
continuous, respectively) makes &7; a mixed integer non-
linear program. Second, the following theorem illustrates
that the service placement problem alone is an NP-hard
problem, not to mention the joint optimization problem.

Theorem 1. The proposed problem 2, is NP-hard.

Proof. Consider a simplified case of &?;, where the edge
nodes are assumed to have unlimited computation resources.
Then the sojourn times of edge-hosted services in the ob-
jective function and the computation-related constraints
(i.e., constraint (1a) and (1f)) could be neglected. Such a
special problem is actually a multi-resource generalized as-
signment problem, which has been proven to be NP-hard
[42]. Thus, as a general case, % is also NP-hard. O

Remarks. First, we emphasize the computation con-
figuration decision y, which specifies the computation re-
source amounts configured for edge-hosted services to ex-
clusively occupy. According to Eq. (4) and (9), it greatly
affects the service placement decision & and the service
response time Dg. Meanwhile, it is upper bounded by the
edge nodes’ computation capacities (constraint (1a)) and
lower bounded by the services’ workloads (constraint (1f)).
Second, the weight parameter w is introduced to control

Py - ® Py Y,
{Theorem 1! | T y
_eorem i Theofem 2|
Decompose [(======== s Substitute with y® *====f==== ’
P, x, Y CCompos hmnnm 11 Y oy
0] "/“'““' ® II Lemma 2 \I
b « Lemma 3
: Gliven ®(x) e @%? Transform ¢ — X' P
| : "

@

Fig. 3: Relationships of problems, theorems and lemmas. The blue
lines indicate that Lemma 1 is related to &1, &2 and 3. The
red dotted line indicates that &1 is eventually transformed into s,
indirectly through &2, %3 and Z4.

the bias between the QoS (i.e., service response time) and
the system cost (i.e., WAN traffic). Moreover, considering
that the service response time per request generally ranges
from tens of milliseconds to several seconds while the WAN
traffic per request may range from bytes to megabytes, w
could also be used to normalize the two metrics to simi-
lar value scales. In practice, one could initially set w to a
large value (e.g., 1) to restrict the WAN traffic and the sys-
tem cost, and gradually decrease w to achieve the desirable
balance between the QoS and the system cost.

4. Algorithm Design

To solve 7, this section develops a two-stage greedy
and local-search combined algorithm, TeLa for short. In
detail, as illustrated in Fig. 3, we first decompose & into
a computation configuration subproblem %7, and a ser-
vice placement subproblem £?3. Then, we split & into
subproblems &, for parallelly solving, where each £ cor-
responds to a unique edge node. Afterward, we solve &,
by the Karush-Kuhn-Tucker (KKT) conditions in convex
optimization and bring its solutions into &75. Finally, we
transform £3 into a set optimization problem %5 with
desirable properties, and propose TeLa to solve &5 based
on submodular optimization. In the end, we also provide
the performance and complexity analysis of TeLa.

4.1. Problem Decomposition

As aforementioned, &?; is a mixed integer nonlinear
program with binary decisions for service placement and
continuous decisions for computation configuration. Since
the two decisions belong to different problem families, i.e.,
combinatorial optimization and numerical optimization, a
straightforward idea is to divide &7; into two indepen-
dent subproblems and solve them separately. However,
service response time and the computation resource con-
straint couple the two decisions deeply, implying that the
derived subproblems should be solved simultaneously in
an interactive manner. This subsection specifies how we
decompose &?; to decouple the decisions and solving the
subproblems is left for the next two subsections.

We start with the feasible set of service placement de-
cisions, which we denote by F. To define it, the service-
placement-related constraints, i.e., constraints (la)~(le)

and (1g), are reserved. To eliminate the influence of com-
putation configuration decisions on JF, we relax constraint
(1a) by leveraging constraints (1le) and (1f), and get

F =A{z| (1b) ~ (le), (1g),
Z Tsp X ashs < Cp,Vn € N}
seS

To decompose &1, we then apply an inner-and-outer
problem model, where solving the outer problem requires
the solution to the inner problem. To be specific, for #y,
the inner problem optimizes the computation configura-
tion decision y under a given feasible service placement
decision « € F, which is formulated as

Py ZIHZ}II Z Z Tsn X ()\sdn + O[Si)\s)

sES neN Ys — QsAs
s.t. (1a), (1f).

For presentation ease, we denote its optimal solution under
@ by y® and its optimal value by ®(x). It is worth noting
that the definition of F ensures the solvability of & and
the existence of y*. The outer problem treats computation
configuration as an oracle and seeks the optimal service
placement decision, which is formulated as
. sAs
Py rmin b(x) + Zazs?o X (Asdo + Y + whsAs)
SES °
st.xeF.

Lemma 1. Let x be a feasible solution to Ps, then x
together with y® is a feasible solution to &y. Moreover,
P35 has the same optimal value with 2.

Proof. See Appendix A for the detailed proof. O

Remarks. First, to decompose £, one could alter-
natively let the inner problem optimize service placement
and let the outer for computation configuration. However,
in this way, the service placement problem is still NP-hard
but the computation configuration problem turns to mini-
mizing a discontinuous function, which is also intractable.
Second, bringing &?5’s objective into &3, it is easily ob-
served that &3 has the same objective with ;. That is,
the objective value of any @ € F and y® on &3 is the same
as that on ;. Combining it with Lemma 1 implies that
the decomposition method is nondestructive and lossless.
In other words, an algorithm for &5 also solves &, and
its performance analysis for &3 applies to &2 as well.

4.2. Computation Configuration (Inner Problem)

Since solving the outer problem relies on the inner, we
aim at the inner problem first. Observing %, we learn
that the computation configuration decision of one edge
node has no influence on that of another. That is to say,
each edge node could optimize its computation configu-
ration independently and parallelly, which decreases the
complexity without impairing the solution’s optimality.

Therefore, we further split &7, into subproblems according
to the edge nodes. Precisely, we take S ,, to denote the set
of services placed on edge node n € N under service place-
ment decision « € F, and take y,, , to denote its computa-
tion configuration decision, i.e., Sgppn = {s € S| x5, = 1},
Yon = (Ys)seS, .- Then, for any x € F and n € N, we
propose to solve the following subproblem:

A
P, :min LSA
Yz ,n $€Sa.n Ys — QgAg
.t. <
Y e (12
Ys > Oés)\svvs S S-’I:TL (4b)

Theorem 2. &, is a convex optimization problem.

Proof. First, as the constraints of &2, are linear, the feasi-

ble set is convex. Second, we denote the objective function

of Z4 by I'(ye) and for any services s, s’ € Sz, we have
2005\ g ,

2 = -——— =
o1 = (ys - O‘s)\s)3 s s

aysays' —0 s 7& s

Combining it with constraint (4b) makes the Hessian ma-
trix H = (%)\Smm\x\sm,n\ of T'(yz,n) positive semi-
definite. Therefore, I'(y,,») is a convex function over the
feasible set. Summing them up, we conclude that &, is a
convex optimization problem. O

As P, is proved to be convex, we apply the KKT con-
ditions in convex optimization [51] to it and finally get the
optimal computation configuration decision as follows:

Cn - ZS’GSw,n s
Ys =
’ Zs’esm,n Hs

X /s + s, VS € S oms

where ps = g\ is used for presentation brevity. Com-
bining the decisions of all edge nodes, we have that given
any x € F, the optimal solution to &, is

Cn — Z reS, , Hs’
Ys = E Tsm 5 € ’”; Vits + ps, Vs € 8. (11)
neN S'GSw,n V s

4.8. Service Placement (Outer Problem)

Now, what remains is to solve the outer problem Z5
for service placement. Since Theorem 1 has illustrated
the NP-hardness of the service placement problem and it
is impossible to optimally solve an NP-hard problem in
polynomial time unless P = N P, we move on to design an
efficient approximation algorithm with near-optimal per-
formance. To begin with, we bring &5’s solution into &5
and rewrite £3’s objective function as follows:

3 @solhedo + 22 1 0B A) + Y 2inhedn)
sES Co neN

Observing the objective function of &5, we learn that
the performance of placing any service on an edge node
depends on not the service itself but the set of all services
placed on that edge node. To leverage this set property,
we transform 23 into a set optimization problem. Let
X C 8 x N denote the service placement decision, where
(s,n) € X means service s € S is placed on edge node
n € N. Given any decision X', we denote the set of services
that are placed on edge node n by Sx p, i.e., Sxn ={s €
S| (s,n) € X}. Then after making some arrangements,
we get the set optimization version of &5 as

, i
P - max ST (Ado+ o WhsAs — Asdy)
neN s€Sx n

_ Z (ZSESX,n \//75)2

neN Cn— (ZSESX,,L Hs)

s.t. Zses){’n s < Cp,¥neN, (5a)

> ms < M,,¥n € N, (5b)
SESX,n

Zsesm 9s < Gn,VnenN, (5¢)

> AsBs < By, Vn € N, (5d)
SESX,n

SxnNSx . =0,Yn,n € Nyn#n'. (5e)

It is worth noting that &5 is a maximization problem,
where the objective is actually the performance gain com-
pared to placing all services on the cloud. For presentation
brevity, we still take F C 25" to denote the feasible set
of &5 and it could be distinguished by the context. In ad-
dition, we take Q(X) : 2% — R to denote the objective
function of &5. In what follows, we show that both Q(X)
and F have desirable properties.

Definition 1. ([/52]) A set function f: 24 — R is mono-
tone vaul g UZ g U, f(ul) S f(ug) or Vul g I/{z g Z/[,
fUh) > f(Uz). Moreover, f is submodular if YUy C Uy C
U andu € U\Us, f(UhLU{u})—f(U) = f(UU{u})—f(Ua).

Lemma 2. Q(X) is submodular but non-monotone over

F.
Proof. See Appendix B for the detailed proof. O

Definition 2. (/53]) Let U be a universe of elements and
T be a collection of subsets of U, i.e., T C 2¥. (U,T) is
called an independence system if: a) 0 € Z; b) Uy C Us and
Uy € T implies Uy € T. Then, the subsets in T are called
independent and the inclusive-wise maximal independent
set of U is called a basis of U. Moreover, for a subset
T C U, its rank r(T) is defined as the cardinality of its
largest basis and its lower rank p(T) is the cardinality of
its smallest basis. Then, an independence system (U,T) is

called a p-independence system if maxscy % <p.

Lemma 3. (SxN,F) is a p-independence system, where

p = min {|N|(FEne tn BEEnEN My, maxnen Gn maxpen Bn

4 Z C(Zsesmm \/ilTé)

neN ~n o (Zsesm,n H’S) .

minses ps 7 minses ms ' minses gs ' minses AsBs
S

Algorithm 1: Proposed Algorithm TeLa

Input: Problem parameters, i.e., S, N, \s, g,
Bs, do, dyn, etc., algorithm parameter e

Output: Decisions ¢ and y
// Initialization

1 £=8,i=0xX0 =0 y® =0

// Stage one: greedy exploration

while 3(s,n) € L x N, XD U {(s,n)} € F do

N

3 (s*,n*) = argmax QXD U{(s,n)});
XDOU{(s,n)}eF

4 | X0 = xO Y {s* n*);

5 L=LN\{s"};

6 | i=it1;

// Stage two: local-search exploitation

7 for j=1,2,3,...,ido

8 (s*,n*) = arg Max(, ,)c () Q{(s,n)});

o | YO ={(s"n)}

10 repeat

11 if 3(s’,n’) € XD\ YU QYD U{(s,n)})
> (1+ ‘ij)‘)ﬂ(ﬂﬂ) then

12 ‘ YO =YD U {(s,n')};

13 else if 3(s’,n') € YU QYW {(s',n")})>
1+ |ij)|)Q(y(j)) then

14 L Y =yl \{(s',n")};

15 until Y9 is not updated;

16 | if QXU \ YU > QYY) then

17 L Y = x0) \y(j) :

18 X* = argmaXye x(yi_ U{YW}i_, QX);
19 Obtain @ from X'* and obtain y by Eq. (11);
20 return x and y.

Proof. See Appendix C for the detailed proof. O

Since &5 is proved to be maximizing a submodular but
non-monotone function over a p-independence system, we
propose a two-stage greedy and local-search combined al-
gorithm TeLa based on the framework in [53]. In detail,
TeLa works as follows (also shown in Algorithm 1). Ini-
tially, auxiliary decisions X(® and Y(© are set to empty
(Line 1), which means all services are placed on the cloud.
Here, L is the set of services that still stay on the cloud and
1 is the iteration index. Following is the first stage, which
applies the greedy policy (Lines 2-6). TeLa puts the pair
(s,n) that has the largest performance margin gain into
auxiliary decisions in each iteration until no service could
be placed on any edge node. Since the objective function
Q(X) is non-monotone, its value may decrease as this pro-
cess evolves. Hence, we develop the second stage, which
applies the local-search policy to seek as better solutions as
possible (Lines 7-17). Specifically, for decision X9) of the
j-th iteration in the first stage, TeLa iteratively adopts lo-
cal neighbors that improve the performance by more than

ﬁ and gives the best decision YU ever encountered. At
last, TeLa chooses the best solution that is found in the
whole process (Line 18) and converts it into the original
decision forms, i.e., x and y (Line 19).

Remarks. First, by Lines 3 and 4, TeLa ensures each
X ig a feasible solution to &5. Meanwhile, the second
stage of TeLa ensures each Y is a subset of X, Then
according to Lemma 3, each Y9 is also feasible for 75,
though they are not explicitly checked. Second, we empha-
size the algorithmic parameter € in Lines 11 and 13. It is
introduced to balance the performance and the complexity
of TeLa. In general, a smaller e drives TeLa to spend more
computing time to achieve better performance.

4.4. Performance Analysis
4/3—¢ . . .
PTi/p -approzimation algorithm
for @5, where p is defined in Lemma 3 and € is a small
positive algorithmic parameter. Its computation complex-

ity is O(ISPIN T+ ISPV + ¢S] 1g S|+ £ ISIP IV 1g]S])-

Proof. Combining Lemma 2 and Lemma 3, we have that
Z5 is maximizing a non-monotone submodular function
over a p-independence system. Then, according to Theo-
rem 2 in [53] and Theorem 3.4 in [54], TeLa is a pi/23+_1€/p'
approximation algorithm for &75. Note that &5 optimizes
service placement and computation configuration to maxi-
mize the performance gain compared to placing all services
on the cloud, where the performance is the weighted sum
of total service response time and total WAN traffic.

The computation complexity of TeLa mainly depends
on the two stages. For stage one, as each iteration would
offload one service from the cloud to the edge nodes, there
are at most |S| iterations. In each iteration, TeLa com-
putes Q for at most |S|x |A/| times. The computation com-
plexity for computing 2 is O(|S| + |[N]). Hence, the com-
putation complexity of stage one is O(|S|2|N| +|S|2|N|?).
For stage two, the number of YU)s is up to |S|. Accord-
ing to [54], computing each YU) involves computing
for at most O(1|S|?1g|S|) times. Thus, the computation
complexity of stage two is O(£[S]*1g|S|+ L|S[*|V|1g]|S]).
Summing them up, we get TeLa’s computation complexity

as O(ISPIN|+ISPIN P+ £1S]* 1g S|+ ¢ [SPIN[1g S]). O

Theorem 3. TelLa is a

5. Implementation and Evaluation

In this section, we implement twelve containerized ser-
vices and an edge computing prototype to evaluate TelLa.
We compare it with state-of-the-art algorithms under var-
ious scenario settings. Simulations in larger scales are also
conducted to verify its scalability and time efficiency.

5.1. Testbed Implementation

Implementation Details. We first implement twelve
containerized services with their client programs, covering
language translation, speech recognition, document con-
version, face recognition, word counting, photo enhance-
ment and blind watermarking. By running various tasks of

Table 4: Summary of Containerized Services

Table 5: Specifications of Edge Nodes and Cloud Servers

Index m, (MB) g, (MB) Bs (KB) as s D CPU Mem. | Sto. Ban. Del.
1 300 117 205 3.08 1 EN1 | 128 GHz | 8 GB 1TB 1 Gbps | 5~15 ms
2 3500 3350 2.97 84.1 0.1 EN2 | 11.2GHz | 4GB | 512 GB | 1 Gbps | 5~15 ms
3 800 1830 433 332 0.1 EN3 | 11.2GHz | 4GB | 512 GB | 1 Gbps | 5~15 ms
4 800 916 208 194 0.5 EN4 | 19.2 GHz | 16 GB 1 TB 1 Gbps | 5~15 ms
5 800 916 1690 14.8 0.5 Clo.T| 67.2 CHz | 64 GB 1TB 1 Gbps 100 ms
6 100 85 14.1 0.123 3 T The specifications of one cloud server.
7 4500 2800 1570 144 0.1
8 500 1120 1910 15.0 0.2 = I T
9 500 1120 300 12.7 0.5 — > (-]
10 2500 711 894 742 05 Yser Command Node Info_| g
11 1000 732 619 5.23 0.2 D:?S;n ; - i Launch Contarmers Cloud)
12 1000 702 2360 357 1 Container Engine
T The units of as and As are giga CPU cycles per request and Dsa?:{: Di?;i;;; Ser\'/)iqzhlnfo l Fetch Container Images
requests per second, respectively. Service de Database
Image Repository
) Q Cloud

Cloud
Servers

-
==
[
=3
o=
o
ol
-
o
o
=
o
e
-
o
o
=
==
[

Fig. 4: Infrastructure of our testbed system.

each service on one node for more than one hundred times,
we learn that they have memory requirements m, ranging
from 100 MB to 4500 MB, storage requirements g, from 85
MB to 3350 MB, average request data sizes 3 from 2.27
KB to 2.36 MB, and expected computation demands per
request ag from 0.123 to 144 giga CPU cycles. Moreover,
we set the request arrival pattern of each service to follow
a Poisson process, where the expected rate \s ranges from
0.1 to 3 requests per second. The detailed information of
these containerized services is listed in Table 4.

To deploy the containerized services, we build an edge
computing system with four heterogeneous desktops as
edge nodes, several servers as the cloud and a laptop as
the controller, as shown in Fig. 4. The edge nodes have
the memory capacities M,, € {4,8,16} GB and the storage
capacities G,, € {512,1024} GB. The computation capac-
ity C,, is set to the product of the processor number and
the CPU frequency, ranging from 11.2 GHz to 19.2 GHz,
and the bandwidth capacity B, is 1 Gbps. Furthermore,
each cloud server has 32 CPUs with the frequency of 2.1
GHz and we allocate 2 CPUs to any cloud-executed task.
Thus, the computation resource that is available to one
cloud-executed task, i.e., ¢,, is 4.2 GHz. Following exist-
ing works [55, 36, 56], the network delay for the cloud o,
i.e., d,, is set to 100 ms and that for any edge node n € N,
i.e., dy, is distributed in [5, 15] ms. We summarize their
specifications in Table 5. Besides, three Raspberry Pis

10

Cloud

Fig. 5: Framework of our testbed system.

are used to act as end devices to run the client programs.
Then we implement our testbed system using Java 11
and Docker [43] with its image repository. As illustrated in
Fig. 5, the system consists of six modules. The databases
maintain the information of containerized services and edge
nodes, respectively. The node proxy is for communicating
with the system manager and launching containerized ser-
vices. The scheduler and allocator invokes TeLa to opti-
mize service placement and computation configuration de-
cisions, where the inputs are obtained from the databases
and the outputs are returned to the system manager. Here,
the parameter ¢ is set to 1072. Based on these modules,
the system manager controls the system with the multi-
thread mechanism for high responsiveness. Lastly, the CLI
module is used for interacting with the system operator.
Benchmarks. As shown in Table 1 and Table 2, some
existing works solve the service placement problem via
Gibbs sampling, which is an optimization technique for
general combinatorial problems [26, 27, 33]. Some works
note the problem’s submodularity and propose the greedy
service placement algorithm [29, 30, 11]. Moreover, many
works consider the computation configuration decisions
are given manually in the granularity of processor numbers
[23, 24, 33, 34]. Intuitively, configuring smaller computa-
tion resources makes one to place more services at edges
to achieve shorter network delays and lower WAN traffic.
Thus, we compare TeLa with the following algorithms:

e GSP-C is a variant of the greedy service placement
algorithm [29] and makes the two decisions simul-
taneously. For service placement, it iteratively se-
lects the pair (s,n) that has the highest marginal
performance gain and places service s on edge node
n. Its computation configuration decision is coarse-
grained, and is set to the minimum processor number
that meets the computation resource constraints.

Table 6: Number of Cloud-hosted Services under Various Weights

Wel |y 102 1074 1075 10°¢ o

Alg.
GS-C 5 5 5 8 10 11
GSP-C 5 5 5 9 9 11
TeLa 3 3 3 7 7 7
Optimal 2 2 3 7 78

e GS-C is a variant of Gibbs sampling [33] and shares
the same computation configuration method with
GSP-C. For service placement, it uses a random-
ized local-search-based policy. In each iteration, it
randomly selects one of the neighbors and adopts it
with a performance-related probability. We set its
parameter to 10~ (small enough) and stop it when
the decision has been unchanged for 10 iterations.

Optimal uses our computation configuration method
and makes the service placement decision by exhaus-
tive search. It has the exponential computation com-
plexity and takes a long time to complete.

For every experiment setting, we run the system for
over 15 minutes, during which more than 7000 user re-
quests are received and processed. Since the system runs
may differ in total request numbers, we mainly compare
these algorithms in terms of response time per request,
WAN traffic per request and the weighted sum of response
time and WAN traffic per request. Unless specified oth-
erwise, the experiment settings are the same as above.

5.2. Testbed Fvaluation Results

Since the weight parameter w, which controls the bias
between service response time and WAN traffic, affects the
decision-making process and the system performance, we
first conduct preliminary experiments to decide its value.
We initially set w to 1 and gradually reduce it to 0, and
Table 6 shows the main results regarding the number of
cloud-hosted services. On the one hand, when w is greater
than 1074, as less services as possible are placed at the
cloud to reduce WAN traffic and the edges are heavily
loaded. In this case, the cloud-hosted service number turns
constant and it seems the algorithms are irrespective of
w. On the other hand, when w is less than 107°, service
response time becomes much more important than WAN
traffic, and the algorithms’ decisions tend to be relatively
stable, especially for TeLa and Optimal. In conclusion, in
order to involve and evaluate the impact of w, we would
better make its value in the range of [10~%, 107°]. Hence,
in the following experiments, we either set w to 5 x 107°
by default, or vary its value from 10~ to 10~°.

Then we conduct experiments to compare the algo-
rithms’ performance under various weight parameters, and
illustrate the results in Fig. 6. As expected, a larger value
of w drives the algorithms to focus more on WAN traffic

11

—4= GS-C —& - GSP-C @+ Tela == QOptimal
5.0 a 18
P oM .
@ £ 12 1 L — f’
K2 4.0 4 B g ed ‘—— o
% 2% "
=] ol N
g 3.0 Z3
g 0 T T T T T
4.5
g 2.0 1 g@
B S % 3.0 1
=]
1.0 §g
2 25 1s
Za

0.0 T T T T T
le-4 7.5e-5 Se-5 2.5e-5 le-5
Weight parameter W

o
IS

T T T T
le-4 7.5e-5 Se-5 2.5e-5 le-5

Weight parameter W

Fig. 6: Testbed results under various weight parameters.

and less on response time, and vice versa. Nevertheless,
TeLa and Optimal always perform better than GS-C and
GSP-C, with a 29.7% to 61.5% reduction on the weighted
sum per request. The reasons are two-fold. First, thanks
to the fine-grained computation configuration, TeLa and
Optimal can make full use of edges’ resources and place
fewer services (i.e., 3 to 7) on the cloud. By contrast,
GS-C and GSP-C have to place more services (i.e., 5 to
9) on the cloud and generate more WAN traffic. Second,
due to the application of convex optimization, TeLa and
Optimal can make the optimal computation configuration
decision to minimize response time. Whereas, adopting
a heuristic and coarse-grained computation configuration
method, GS-C and GSP-C utilize the computation re-
sources inefficiently and bear longer response time. Note
that though TeLa and Optimal sometimes have the same
cloud-hosted service number, they may place services onto
different nodes and perform differently in response time,
as a result of edges’ heterogeneity and services’ diversity.

Next, in Fig. 7(a) and Fig. 7(b), we measure the impact
of edges’ computation capacities and services’ workloads
on the algorithms’ performance. Here, low, high and full
capacities refer to setting edges’ computation capacities to
%, 2(37” and C,,, and light, medium and heavy workloads
refer to setting the expected request arrival rates to 0.5\,
As and 1.5\, Clearly, increasing edges’ capacities or de-
creasing services’ workloads result in lower response time
and WAN traffic, since edges become relatively more capa-
ble. However, the algorithms differ in the adaptation be-
haviors. For instance, when edges’ computation capacities
advance from low to full, the cloud-hosted service number
of TeLa and Optimal changes from 7 to 5, that of GS-C
changes from 8 to 6, while GSP-C still places 7 services
on the cloud and only adapts service placement among
the heterogeneous edges. When services’ workloads de-
crease from heavy to light, GS-C and GSP-C offload more
services to edges while TeLa and Optimal mainly adapt
computation configuration and service placement among
the edges. In summary, covering such variations, TeLa re-
duces the weighted sum per request of GS-C and GSP-C
by 24.4% to 42.2% and 26.9% to 42.6%, respectively.

—4- GS-C =—m: GSP-C +®: TeLa ==h=— Optimal
5.0 ~ 18
o2
@ £ET 12
< w
2 4.0 58
g Z8 ¢
£ 30 e &
g ———e T T T
g D akiainis. 45
| 240—..__. Q@
& e, £3 3.0
z el 3L e
1.0 58 - e gy
2 B2 15 A&eeeres LT
v L 2
RS —
0.0 T T T 0.0 T T T
Low(1/3) High(2/3) Full(l) Low(1/3) High(2/3) Full(1)

Degree of computation capacity Degree of computation capacity

(a) Impact of edges’ computation capacities

-4 GS-C =—m- GSP-C -®- TcLa == Optimal

5.0 2 18
@ R
@2 4.0 =2 . -
% z & =
[<2 6
2 =2 = w‘
2 3.0 2
5 T T T
a
£ 20 o
@ o EL”/
9 g2
8 ;5 3.0 o
= 23
.20 1.0 A £g
° o= 15
= 25

o &

0.0 - T T
Light(0.5) Medium(1) Heavy(1.5)

Degree of workload

0.0 - T T
Light(0.5) Medium(1) Heavy(1.5)
Degree of workload

(b) Impact of services’ workloads

Fig. 7: Testbed results under various edge node computation capac-
ities and service workloads.

To further evaluate the robustness of TeLa, we change
the request arrival patterns from Poisson to burst and uni-
form, and visualize their effects in Fig. 8(a) and Fig. 8(b),
respectively. In the burst pattern, users send service re-
quests every ten seconds, leading to a series of workload
bursts, while in the uniform pattern, the time intervals
of user requests are uniformly distributed in [%, 1}\—35] sec-
onds. Due to the unawareness of the request arrival pat-
tern variations, these algorithms do not adapt their deci-
sions. Thus, their cloud-hosted services remain the same
and their performances on WAN traffic hardly change.
However, concerning the response time, their performances
change notably. In detail, the burst pattern makes more
requests to wait in queue and bear longer queuing delays,
driving the algorithms to perform poorer. By contrast,
the uniform pattern makes request arrivals steady and de-
creases queuing delays. Nonetheless, TeLa reduces the re-
sponse time per request of GS-C and GSP-C by 35.2%
to 74.8% and 25.2% to 70.2%. It implies that thanks to
the optimized and fine-grained computation configuration,
TeLa could utilize the resources more effectively.

5.8. Simulation Evaluation Results
To further evaluate TeLa’s scalability, simulations in
larger scales are also conducted. Specifically, the service

12

—4- GS-C =—m: GSP-C +®- TeLa =h=— Optimal
5.0 18
- oa 4
T £2 12 4=
> 4.0 \‘\‘ j:§ = o R4
7 RS z & - :
$ \<’> 28 67 g
o — .. @
g 30 =3« =5 e
2 '\\: 0 = T T T T
@-=.. 4.5
£ 20 .. N
z ..., R oL
g .‘.. ;g 3.0 §".._..-.§~‘
ol 22 -
2 1.0 o 28 0.,
2 fg PP
s o " a
MQ‘
00 T T T T T 00 T T T T T

le-4 7.5e-5 5e-5 2.5e-5 le-5
Weight parameter W

le-4 7.5e-5 5e-5 2.5e-5 le-5
Weight parameter w

(a) Impact of request arrival patterns (burst pattern)

n
1

—4- GS-C =—m: GSP-C -®- TeLa == Optimal
5.0 ~ 18
Qa .
) £% 12 1
% 40 4 £% . g
= =1 .-—l.:-’ .
7 zg
2 £: o
g 5 -
5 T T T T T
) 45
Z
3 3.0
=
=y
o
=

Response time
per request (s)

o
=)

le-4 7.5e-5 5e-5 2.5e-5 le-5
Weight parameter w

le-4 7.5e-5 5e-5 2.5e-5 le-5
Weight parameter w

(b) Impact of request arrival patterns (uniform pattern)

Fig. 8: Testbed results under various request arrival patterns.

and edge node numbers are by default 150 and 30, and
their specifications (e.g., resource capacities and resource
requirements) are uniformly sampled from our implemented
services and edge nodes. We then vary the two numbers
from 100 to 200 and 20 to 40, and show their impact on the
algorithms in Fig. 9. Due to the fact that Optimal has the
exponential computation complexity and spends an unac-
ceptably long time to compute, e.g., more than an hour
for even 10 edges and 30 services, we omit its performance
here and focus on the rest algorithms. Since the edge nodes
are resource-limited, a larger service number means that
the edges are more likely to be heavily loaded and more
services would be placed on the cloud, leading to longer
response time and larger WAN traffic. In our simulations,
the average cloud-hosted service ratio under 100 services
is 48.7% and that under 200 services is 67.7%. On the
contrary, a larger edge node number leads to shorter re-
sponse time and smaller WAN traffic, since more resources
are deployed near the users. Covering these settings, TelLa
achieves a 15.8% to 42.2% reduction on the weighted sum
per request, implying that TeLa scales well.

Finally, to evaluate the time efficiency of TeLa, we run
these algorithms on an Intel Core 17-7800X@3.5GHz CPU,
and show their computing times for 50~300 services and
25~150 edge nodes in Table 7. Here, Optimal is absent

Table 7: Computing Times of the Algorithms (in Milliseconds)

N GS-C GSP-C TeLa
IS| 25 50 75 100 125 150 | 25 50 75 100 125 150 | 25 50 75 100 125 150
50 5 8 16 16 16 31 <3 <3 <3 <3 <3 5 5 9 12 15 19 22
100 15 13 31 43 46 63 | <3 5 9 10 16 18 30 49 73 95 117 140
150 47 34 50 63 66 94 7 10 15 24 34 47 95 158 223 301 340 406
200 79 47 63 85 94 110 | 16 30 47 58 78 93 | 206 393 520 679 843 958
250 187 119 93 94 125 141 | 31 78 125 157 203 250 | 370 735 945 1285 1545 1817
300 219 133 120 140 156 172 | 8 172 258 359 437 532 | 455 1366 1651 2190 2554 3105
XN Gs-C E= GSpP-C EZ Tela 6. Conclusion
4.0 33
— o3 With containers’ fine-grained computation resource iso-
E < a,:g% 227 lation, edges’ heterogeneity and services’ diversity taken
g 307 W\ <Zc§‘ 11 4 @ into account, this paper jointly optimizes service place-
g NN = g8 m, % % ment and computation configuration for provisioning con-
5 2.0 \EZm\ 22 ot tainerized services at edges. We propose a two-stage greedy
2 \ 2 and local-search combined algorithm TeLa based on con-
Ei 1o 4 HN fw,é 1.6 7 vex and submodular optimization, and prove its approxi-
2 N N g‘% 08 @ @ @ mation ratio and polynomial computation complexity. At
0.0 LNHI RH E ‘I ‘I & & o LEH N N N N last, we evaluate TeLa upon an edge computing proto-

100 125 150 175 200

Number of containerized services

100 125 150 175 200

Number of containerized services

(a) Impact of service number

3 Gs-C E= GSp-C EZ1 TeLa
4.0 ~ 33
og N
2 €% 2 N
< 30 -z \
8 228 114
: g \il
=1 o 0
a 20 _ T T T T T
= 24
g 2=
2 =% 1.6 1
= 1.0 1 Q=
= £g \
2 25 08 1N
22
0.0 T T 0 T T T T
20 25 30 35 40 20

Number of edge nodes Number of edge nodes

(b) Impact of edge node number

Fig. 9: Simulation results under various service numbers and edge
node numbers.

again due to its exponential computation complexity and
extremely long computing times. Besides, as a randomized
iterative algorithm, GS-C may search a small solution set
and its computing time not surely scales with the whole so-
lution space. For example, it spends an unexpectedly long
time for 25 edges and 300 services, because the edges are
now overloaded and it has to spend more time in finding a
feasible solution in each iteration. Moreover, compared to
GS-C and GSP-C, TeLa indeed spends a little more time in
making finer-grained computation configuration decisions.
Nevertheless, when the system has services less than 250
(or 200) and edges less than 75 (or 150), which covers many
real-world scenarios, TeLa’s computing time is within one
second, showing that TeLa is time efficient.

13

type and the result verifies its superiority over state-of-
the-art algorithms. In our future work, we will extend this
joint problem to cover a wide area scenario, where edges
in different serving regions could cooperate and workload
scheduling should be incorporated.

Appendix A. The Proof of Lemma 1

Proof. The first statement could be easily proved by com-
bining the definition of F and the constraints of %;. We
omit its proof and focus on the second statement.

During this proof, we rewrite the objective function of
P as T(x,y) + V(x) for presentation brevity, where

Y(z,y) = ZSESZn NﬂcsnXO\ dy, +

V(@)=Y w0 x (Ad +“ s 8.

Qg

—cv)\)

Then, the objective function of &3 could be expressed as
®(x) + ¥(x), and according to H5, we have
®(x) = min{Y(x,y) | y is feasible to &5 under x}.
(A1)

To proceed, let v} be the optimal value of &7, and x; with
y; be one of its optimal solutions. Let v; be the optimal
value of ¥3 and «j be one of its optimal solutions.

1) proving vy < v¥. We have the following inequations:

O (x3) + U(x3) < O(x]) + ¥(z])
< Y(xi,y1) + ¥(21).
The first inequality holds because &3 is a minimization

problem and xj is its optimal solution. Meanwhile, Eq.
(A.1) guarantees that for any feasible solution x and y,

we have ®(x) < Y(x,y). Therefore, the second inequality
holds. Combining these inequations with v = ®(x}) +
U(x3) and vf = T(x], y7) + U(x}) yields v§ < vf.

2) proving vi < v}. According to the first statement of
this lemma, 3 with y®s is also a feasible solution to 4.
As a consequence, we have

Y(ei yi) + U(@]) < T(5,y™) + U(z3)
= ®(w3) + ¥(x3).
The inequality holds due to the optimality of 7 and y3 for
2. The equality holds since y®5 is the optimal solution
to 5. Then similar to the first case, we get vy < v3.

Putting v3 < v} and v] < v3 together, we have vi = v3,

which means &3 has the same optimal value with &7;. [

Appendix B. The Proof of Lemma 2

Proof. To prove this lemma, we consider any two subsets
X C X CSxN and any element (e,n) € S x N\ A/,
such that X, X', X U {(e,n)} and X' U {(e,n)} are all
feasible. Then, the margin gains at X and X’ are
QX U{(e,n)}) - QAUX)

He +2v/e(Xsesn,, V)

Cn — (Zsesxm fhs) — He
B Ne(ZsESx,n VNS)Q

(Crn — (ZSESX,,L #s))(Cn — (Zses&n fis) = pe)’
QXU {(e,n)}) — QAX)

Ae(do — d) + 22 4 wBA
Co

Ihe He + 2\/@(256‘5”.” VHs)
=Ae(do — dp) + — + wheAe — :
<) Co Cn - (ZSGS;W,n MS) — He
/’LQ(ZSESX/W \//73)2
(Cn — (Zsesx,,n 1)) (Crn — (Zsesxlvn Hs) — /~Le).

Two insights are found from the above equations. First,
as X is a subset of X/, we have for any edge node n € N,
Sxn € Sxr . Then the following inequalities hold:

ZSGSX,n Hs = ZSGSX/Y Hs:

n

ZSESM Vs < ZSQSM Vs

Thus, we have Q(XU{(e,n)}) —Q(X) > QX' U{(e,n)}) —
Q(X"), which proves the submodularity of Q(X). Second,
it is easy to see that Q(X U {(e,n)}) — Q(X) is not surely
positive or negative. Intuitively, a large set of X tends to
have negative margin gains since the edge nodes are now
overloaded, and vice versa. As a consequence, 2(X) is
non-monotone. O

Appendix C. The Proof of Lemma 3

Proof. Obviously, an empty set is a subset of F, since
we could place all services on the cloud. Moreover, ac-
cording to the constraints of &5, a subset X of a feasi-
ble solution X’ € F is also feasible, implying X € F.

Thus, (S8 x N,F) is an independence system. As for
determining p, we first have MAXTCSxN,|T|<1 % =1,
where 7(T) and p(7) is the cardinality of the largest and
the smallest basis of T, respectively, since currently there
is at most one service involved in 7. Then we focus
on any subset whose cardinality is larger than one, i.e.,
T CSxN,|T| > 1. Since we could place at least one ser-
vice at edges in practical scenarios, we have min p(7) > 1.
Moreover, as each service could be placed on at most
one node, the cardinality of any independent set of T is
bounded by the service number, leading to maxr(7T) <
|S|. Meanwhile, the limited resources of edges also re-
strict the number of edge-hosted services. Precisely, the

number of services that each edge node could host is at

most Hlln{ maxnenN Cp , maXnen M, , maxnen G , maxnen B, }
minges ps 7 Minges ms minses gs ’ minses AsfBs

Summarizing these cases, we finally have maxsrcsxnr % <

min {|N|(maxn51\/ Cn maxpeny Mp maxpeny Gn maxpen Bn)7 IS'}
O

. minges gs ' Minges m; ’ minses gs ’ Minges AsBs
Following Definition 2 yields the expression of p.

References

[1] M. K. Hussein, M. H. Mousa, M. A. Algarni, A placement ar-

chitecture for a container as a service (CaaS) in a cloud en-

vironment, Journal of Cloud Computing 8 (1) (2019) 7. doi:
10.1186/s13677-019-0131-1.

URL https://journalofcloudcomputing.springeropen.com/

articles/10.1186/s13677-019-0131-1

V. Liagkou, G. Fragiadakis, E. Filiopoulou, C. Michalakelis,

T. Kamalakis, M. Nikolaidou, A pricing model for Container-as-

a-Service, based on hedonic indices, Simulation Modelling Prac-

tice and Theory 115 (2022) 102441. doi:10.1016/j.simpat.

2021.102441.

URL https://www.sciencedirect.com/science/article/pii/

S51569190X21001362

[3] A. Saboor, M. F. Hassan, R. Akbar, S. N. M. Shah, F. Has-

san, S. A. Magsi, M. A. Siddiqui, Containerized Microservices
Orchestration and Provisioning in Cloud Computing: A Con-
ceptual Framework and Future Perspectives, Applied Sciences
12 (12) (2022) 5793, number: 12 Publisher: Multidisciplinary
Digital Publishing Institute. doi:10.3390/app12125793.

URL https://www.mdpi.com/2076-3417/12/12/5793

[4] Amazon Elastic Container Service (Amazon ECS).

URL https://aws.amazon.com/ecs/

Google Kubernetes Engine (GKE).

URL https://cloud.google.com/kubernetes-engine

[6] Azure Container Instances.

URL https://azure.microsoft.com/en-us/services/

container-instances/

W. Shi, J. Cao, Q. Zhang, Y. Li, L. Xu, Edge Computing: Vi-

sion and Challenges, IEEE Internet of Things Journal 3 (5)

(2016) 637-646, conference Name: IEEE Internet of Things

Journal. doi:10.1109/JI0T.2016.2579198.

[8] M. Satyanarayanan, The emergence of edge computing, Com-

puter 50 (1) (2017) 30-39, publisher: IEEE.

C. Pahl, S. Helmer, L. Miori, J. Sanin, B. Lee, A Container-

Based Edge Cloud PaaS Architecture Based on Raspberry Pi

Clusters, in: 2016 IEEE 4th International Conference on Future

Internet of Things and Cloud Workshops (FiCloudW), 2016, pp.

117-124. doi:10.1109/W-FiCloud.2016.36.

[10] P. Bellavista, A. Zanni, Feasibility of Fog Computing De-
ployment based on Docker Containerization over RaspberryPi,
in: Proceedings of the 18th International Conference on Dis-
tributed Computing and Networking, ICDCN ’17, Association
for Computing Machinery, New York, NY, USA, 2017, pp. 1-10.

2

5

[7

9

(11]

(12]

(13]

(14]

(15]
(16]
(17]
(18]

(19]

23]

(24]

[25]

(26]

27]

28]

29]

doi:10.1145/3007748.3007777.

URL https://doi.org/10.1145/3007748.3007777

L. Gu, D. Zeng, J. Hu, B. Li, H. Jin, Layer Aware Mi-
croservice Placement and Request Scheduling at the Edge, in:
IEEE INFOCOM 2021 - IEEE Conference on Computer Com-
munications, 2021, pp. 1-9, iSSN: 2641-9874. doi:10.1109/
INFOCOM42981.2021.9488779.

L. Pan, L. Wang, S. Chen, F. Liu, Retention-Aware Container
Caching for Serverless Edge Computing, in: IEEE INFOCOM
2022 - IEEE Conference on Computer Communications, 2022,
pp. 1069-1078, iSSN: 2641-9874. doi:10.1109/INFOCOM48880.
2022.9796705.

P. Kayal, Kubernetes in Fog Computing: Feasibility Demon-
stration, Limitations and Improvement Scope : Invited Paper,
in: 2020 IEEE 6th World Forum on Internet of Things (WF-
IoT), 2020, pp. 1-6. doi:10.1109/WF-I0T48130.2020.9221340.
Kubernetes: Production-Grade Container Orchestration
(2022).

URL https://kubernetes.io/

MicroK8s - Zero-ops Kubernetes for developers, edge and IoT.
URL https://microk8s.io/

KubeEdge, KubeEdge.

URL https://kubeedge.io/

K3s: Lightweight Kubernetes.

URL https://k3s.io/

Alibaba cluster data.

URL https://github.com/alibaba/clusterdata

Huawei Cloud.

URL https://www.huaweicloud.com/pricing/calculator.
html#/ecs

Google Cloud.

URL https://cloud.google.com/vpc/network-pricing

AWS Cloud.

URL https://aws.amazon.com/ec2/pricing/on-demand/

D. Palomar, M. Chiang, A tutorial on decomposition meth-
ods for network utility maximization, IEEE Journal on Selected
Areas in Communications 24 (8) (2006) 1439-1451, conference
Name: IEEE Journal on Selected Areas in Communications.
d0i:10.1109/JSAC.2006.879350.

S. Pasteris, S. Wang, M. Herbster, T. He, Service placement
with provable guarantees in heterogeneous edge computing sys-
tems, in: IEEE INFOCOM 2019-IEEE Conference on Com-
puter Communications, IEEE, 2019, pp. 514-522.

T. Ouyang, Z. Zhou, X. Chen, Follow Me at the Edge: Mobility-
Aware Dynamic Service Placement for Mobile Edge Computing,
IEEE JSAC 36 (10) (2018) 2333-2345.

G. Lia, M. Amadeo, G. Ruggeri, C. Campolo, A. Molinaro,
V. Loscri, In-network placement of delay-constrained computing
tasks in a softwarized intelligent edge, Computer Networks 219
(2022) 109432. doi:10.1016/j.comnet.2022.109432.

URL https://wuw.sciencedirect.com/science/article/pii/
S$51389128622004662

J. Dou, F. Yuan, J. Cao, X. Meng, X. Ma, Z. Guo, Place-
ment Combination between Heterogeneous Services and Het-
erogeneous Capacitated Servers in Edge Computing, Jour-
nal of Grid Computing 21 (1) (2023) 16. doi:10.1007/
s10723-023-09644-3.

URL https://doi.org/10.1007/s10723-023-09644-3

J. Xu, L. Chen, P. Zhou, Joint Service Caching and Task Of-
floading for Mobile Edge Computing in Dense Networks, in:
IEEE INFOCOM 2018 - IEEE Conference on Computer Com-
munications, 2018, pp. 207-215. doi:10.1109/INFOCOM.2018.
8485977.

K. Poularakis, J. Llorca, A. M. Tulino, I. Taylor, L. Tassiu-
las, Joint service placement and request routing in multi-cell
mobile edge computing networks, in: IEEE INFOCOM 2019-
IEEE Conference on Computer Communications, IEEE, 2019,
pp. 10-18.

T. He, H. Khamfroush, S. Wang, T. La Porta, S. Stein, It’s Hard
to Share: Joint Service Placement and Request Scheduling in
Edge Clouds with Sharable and Non-Sharable Resources, in:

15

30]

31]

32]

(33]

34]

(35]

(36]

[37]

(38]

39]

(40]

[41]

42]

2018 IEEE 38th International Conference on Distributed Com-
puting Systems (ICDCS), 2018, pp. 365-375, iSSN: 2575-8411.
doi:10.1109/ICDCS.2018.00044.

V. Farhadi, F. Mehmeti, T. He, T. La Porta, H. Khamfroush,
S. Wang, K. S. Chan, Service Placement and Request Schedul-
ing for Data-intensive Applications in Edge Clouds, in: IEEE
INFOCOM 2019-IEEE Conference on Computer Communica-
tions, IEEE, 2019, pp. 1279-1287.

F. Wang, C. Zhang, J. Liu, Y. Zhu, H. Pang, L. Sun, Intelligent
edge-assisted crowdcast with deep reinforcement learning for
personalized QoE, in: IEEE INFOCOM 2019-IEEE Conference
on Computer Communications, IEEE, 2019, pp. 910-918.

D. Lee, Y. Kim, M. Song, Cost-Effective, Quality-Oriented
Transcoding of Live-Streamed Video on Edge-Servers, IEEE
Transactions on Services Computing 16 (4) (2023) 2503-2516,
conference Name: IEEE Transactions on Services Computing.
doi:10.1109/TSC.2023.3256425.

X. Ma, A. Zhou, S. Zhang, S. Wang, Cooperative Service
Caching and Workload Scheduling in Mobile Edge Comput-
ing, in: IEEE INFOCOM 2020 - IEEE Conference on Com-
puter Communications, 2020, pp. 2076—-2085, iSSN: 2641-9874.
doi:10.1109/INFOCOM41043.2020.9155455.

T. Cao, Y. Jin, X. Hu, S. Zhang, Z. Qian, B. Ye, S. Lu, Adaptive
provisioning for mobile cloud gaming at edges, Computer Net-
works 205 (2022) 108704. doi:10.1016/j.comnet.2021.108704.
URL https://www.sciencedirect.com/science/article/pii/
5138912862100565X

T. Goethals, F. De Turck, B. Volckaert, FLEDGE: Kuber-
netes Compatible Container Orchestration on Low-Resource
Edge Devices, in: C.-H. Hsu, S. Kallel, K.-C. Lan, Z. Zheng
(Eds.), Internet of Vehicles. Technologies and Services Toward
Smart Cities, Lecture Notes in Computer Science, Springer In-
ternational Publishing, Cham, 2020, pp. 174-189. doi:10.1007/
978-3-030-38651-1_16.

T. Ouyang, R. Li, X. Chen, Z. Zhou, X. Tang, Adaptive User-
managed Service Placement for Mobile Edge Computing: An
Online Learning Approach, in: IEEE INFOCOM 2019-IEEE
Conference on Computer Communications, IEEE; 2019, pp.
1468-1476.

C. Li, Q. Zhang, C. Huang, Y. Luo, Optimal Service Selection
and Placement Based on Popularity and Server Load in Multi-
access Edge Computing, Journal of Network and Systems Man-
agement 31 (1) (2022) 15. doi:10.1007/s10922-022-09703-2.
URL https://doi.org/10.1007/5s10922-022-09703-2

Z. Xiang, S. Deng, F. Jiang, H. Gao, J. Tehari, J. Yin, Com-
puting Power Allocation and Traffic Scheduling for Edge Service
Provisioning, in: 2020 IEEE International Conference on Web
Services (ICWS), 2020, pp. 394-403. doi:10.1109/ICWS49710.
2020.00058.

Q. Fan, N. Ansari, Application Aware Workload Allocation for
Edge Computing-Based IoT, IEEE Internet of Things Journal
5 (3) (2018) 2146-2153, conference Name: IEEE Internet of
Things Journal. doi:10.1109/JI0T.2018.2826006.

URL https://ieeexplore.ieee.org/document/8336866

A. Al-Shuwaili, O. Simeone, Energy-Efficient Resource Allo-
cation for Mobile Edge Computing-Based Augmented Reality
Applications, IEEE Wireless Communications Letters 6 (3)
(2017) 398-401, conference Name: IEEE Wireless Communica-
tions Letters. doi:10.1109/LWC.2017.2696539.

URL https://ieeexplore.ieee.org/document/7906521/
authors#authors

Y. Nam, Y. Choi, B. Yoo, H. Eom, Y. Son, Edgelso: Ef-
fective Performance Isolation for Edge Devices, in: 2020
IEEE International Parallel and Distributed Processing
Symposium (IPDPS), 2020, pp. 295-305, iSSN: 1530-2075.
doi:10.1109/IPDPS47924.2020.00039.

URL https://ieeexplore.ieee.org/abstract/document/
9139806

V. Maniezzo, M. A. Boschetti, T. Stiitzle, The Generalized As-
signment Problem, in: V. Maniezzo, M. A. Boschetti, T. Stiitzle
(Eds.), Matheuristics: Algorithms and Implementations, EURO

[43]

[44]

(45]

[46]

(47]

(48]

[49]

(50]

[51]

[52]

(53]

[54]

(53]

[56]

Advanced Tutorials on Operational Research, Springer Inter-
national Publishing, Cham, 2021, pp. 3-33. doi:10.1007/
978-3-030-70277-9_1.

URL https://doi.org/10.1007/978-3-030-70277-9_1

Docker Engine.

URL https://www.docker.com/

F. A. Salaht, F. Desprez, A. Lebre, An Overview of Service
Placement Problem in Fog and Edge Computing, ACM Com-
puting Surveys 53 (3) (2020) 65:1-65:35. doi:10.1145/3391196.
URL https://dl.acm.org/doi/10.1145/3391196

B. Sonkoly, J. Czentye, M. Szalay, B. Németh, L. Toka, Sur-
vey on Placement Methods in the Edge and Beyond, IEEE
Communications Surveys & Tutorials 23 (4) (2021) 2590-2629,
conference Name: IEEE Communications Surveys & Tutorials.
doi:10.1109/C0OMST.2021.3101460.

URL https://ieeexplore.ieee.org/document/9502167

H. Tabatabaee Malazi, S. R. Chaudhry, A. Kazmi, A. Palade,
C. Cabrera, G. White, S. Clarke, Dynamic Service Placement
in Multi-Access Edge Computing: A Systematic Literature Re-
view, IEEE Access 10 (2022) 32639-32688, conference Name:
IEEE Access. doi:10.1109/ACCESS.2022.3160738.

URL https://ieeexplore.ieee.org/document/9738624

Z. Ma, S. Zhang, Z. Chen, T. Han, Z. Qian, M. Xijao, N. Chen,
J. Wu, S. Lu, Towards Revenue-Driven Multi-User Online Task
Offloading in Edge Computing, IEEE Transactions on Parallel
and Distributed Systems 33 (5) (2022) 1185-1198, conference
Name: IEEE Transactions on Parallel and Distributed Systems.
doi:10.1109/TPDS.2021.3105325.

URL https://ieeexplore.ieee.org/document/9516964

L. Chen, S. Zhou, J. Xu, Computation Peer Offloading for
Energy-Constrained Mobile Edge Computing in Small-Cell Net-
works, IEEE/ACM Transactions on Networking 26 (4) (2018)
1619-1632, conference Name: IEEE/ACM Transactions on Net-
working. doi:10.1109/TNET.2018.2841758.

V. Sundarapandian, Probability, statistics and queuing theory,
PHI Learning Pvt. Ltd., 2009.

S. Sundar, B. Liang, Offloading Dependent Tasks with Commu-
nication Delay and Deadline Constraint, in: IEEE INFOCOM
2018 - IEEE Conference on Computer Communications, 2018,
pp. 37-45. doi:10.1109/INFOCOM.2018.8486305.

S. Boyd, S. P. Boyd, L. Vandenberghe, Convex optimization,
Cambridge university press, 2004.

G. L. Nemhauser, L. A. Wolsey, M. L. Fisher, An analy-
sis of approximations for maximizing submodular set func-
tions—I, Mathematical Programming 14 (1) (1978) 265-294.
doi:10.1007/BF01588971.

URL https://doi.org/10.1007/BF01588971

A. Gupta, A. Roth, G. Schoenebeck, K. Talwar, Con-
strained Non-monotone Submodular Maximization: Offline
and Secretary Algorithms, in: A. Saberi (Ed.), Internet
and Network Economics, Lecture Notes in Computer Science,
Springer, Berlin, Heidelberg, 2010, pp. 246-257. doi:10.1007/
978-3-642-17572-5_20.

U. Feige, V. S. Mirrokni, J. Vondrdk, Maximizing Non-
monotone Submodular Functions, STAM Journal on Computing
40 (4) (2011) 1133-1153, publisher: Society for Industrial and
Applied Mathematics. doi:10.1137/090779346.

URL https://epubs.siam.org/doi/abs/10.1137/090779346
A. Samanta, Z. Chang, Adaptive Service Offloading for Rev-
enue Maximization in Mobile Edge Computing With Delay-
Constraint, IEEE Internet of Things Journal 6 (2) (2019) 3864—
3872, conference Name: IEEE Internet of Things Journal.
d0i:10.1109/JI0T.2019.2892398.

H. Tan, Z. Han, X.-Y. Li, F. C. Lau, Online job dispatching
and scheduling in edge-clouds, in: IEEE INFOCOM 2017-IEEE
Conference on Computer Communications, IEEE, 2017, pp. 1-
9.

16

Tuo Cao received the B.S. degree from
the Department of Computer Science and
Technology, Xian Jiaotong University, in
2019. He is currently working towards
the Ph.D. degree under the supervision
of Professor Zhuzhong Qian in Nanjing
University, China. His research interests include edge com-
puting, distributed systems, scheduling algorithms and op-
timization theory. To date, his research has been published
in journals such as Computer Networks, and in conferences
such as IWQoS, WoWMoM, MSN. He received the Cisco
best paper candidate award from WoWMoM 2021.

Qinhui Wang received his B.S., M.S.,
and Ph.D. degrees from Nanjing Univer-
sity in 2007, 2011, and 2015, respectively,
all in computer science. He is now with
Department of Military Training and Man-
agement, Army Command College, China.
. His current research interests include Mo-
= t bile Wireless Networks, Cloud Comput-
ing and Edge Computing.

Yuhan Zhang received the BS degree
from the School of Computer Science and
Engineering, Nanjing University of Sci-
ence and Technology, in 2021. He is cur-
rently pursuing the MS degree under the
supervision of Professor Zhuzhong Qian
in the Department of Computer Science
, and Technology, Nanjing University. His
research interests include edge computing, service place-
ment, and intelligent inference.

Zhuzhong Qian is currently a full pro-
fessor at the Department of Computer
Science and Technology, and member of
National Key Laboratory for Novel Soft-
ware Technology, Nanjing University, P.
R. China. He received his PhD. Degree
in 2007. His research interests include cloud computing,
edge computing, and distributed machine learning. He
is the chief member of several national research projects
on cloud computing and edge computing. His research
has been published in journals such as TPDS, TON, TC,
and TMC, and in conferences such as INFOCOM, ICDCS,
SECON, and IPDPS. He received best paper awards from
IMIS 2013, ICA3PP 2014 and APNet 2018.

-

A\:-ir/k

Yue Zeng received the M.S. degree in
the department of electronic information
engineering from Southwest University,
Chongging, China, in 2019. He is cur-
rently working toward the Ph.D. degree
in the department of computer science
and technology in Nanjing University, China.
His research interests include federated
learning, deep reinforcement learning, network functions
virtualization, distributed computing, and edge comput-

ing. He has published over ten papers in relevant jour-
nals and conferences, including IEEE Transactions on Ser-
vice Computing (T'SC), IEEE Transactions on Communi-
cations(TCOM), IEEE Transactions on Cloud Comput-
ing(TCC), and Computer Networks (COMNET), etc.

Mingtao Jireceived the B.E. degree from
the College of Computer Science and Tech-
nology, Nanjing University of Aeronau-
tics and Astronautics of in 2018. He is
currently pursuing the PhD degree under

{ the supervision of Professor Zhuzhong Qian
; in Nanjing University. To date, he has
% already published over 7 papers, includ-

ing in journals such as IEEE TON, Electric Power ICT,
and in conferences such as IEEE ICC, IEEE INFOCOM,
IEEE ISPA. His research interests include P4 switch, big
data analytics and distributed machine learning.

Hesheng Sun received the BS degree
from the Department of Computer Sci-
ence and Technology, Xi’an Jiaotong Uni-
versity in 2020. He is currently pursuing
L the PhD degree under the supervision of

Professor Zhuzhong Qian in Nanjing Uni-
versity. He was a visiting student with the University of
Alberta, Canada in 2018. His research interests include
machine learning and edge computing.

Baoliu Ye is a full professor at Depart-
ment of Computer Science and Technol-
ogy, Nanjing University. He received his
Ph.D. in computer science from Nanjing
University, China in 2004. He served as
a visiting researcher of the University of
Aizu, Japan from March 2005 to July
2006, and the Dean of School of Com-
puter and Information, Hohai University since January
2018. His current research interests mainly include dis-
tributed systems, cloud computing, wireless networks with
over 70 papers published in major conferences and jour-
nals. Prof. Ye served as the TPC co-chair of HotPOST12,
Hot-POST11, P2PNet10. He is the regent of CCF, the
Secretary-General of CCF Technical Committee of Dis-
tributed Computing and Systems.

17

CRediT Authorship Contribution Statement

Tuo Cao: Conceptualization, Methodology, Formal Analysis, Software, Writing - Original
Draft

Qinhui Wang: Methodology, Validation, Writing - Review & Editing

Yuhan Zhang: Methodology, Validation, Writing - Review & Editing

Zhuzhong Qian: Supervision, Project Administration

Yue Zeng: Methodology, Validation, Writing - Review & Editing

Mingtao Ji: Writing - Review & Editing

Hesheng Sun: Writing - Review & Editing

Baoliu Ye: Supervision, Validation

Declaration of interests

The authors declare that they have no known competing financial interests or personal relationships
that could have appeared to influence the work reported in this paper.

[J The authors declare the following financial interests/personal relationships which may be considered
as potential competing interests:

	Walking on two legs: Joint service placement and computation configuration for provisioning containerized services at edges
	CRediT authorship contribution statement
	Data availability

