
T
a
v
i
P
c

©

Journal Pre-proof

Walking on two legs: Joint service placement and computation
configuration for provisioning containerized services at edges

Tuo Cao, Qinhui Wang, Yuhan Zhang, Zhuzhong Qian, Yue Zeng,
Mingtao Ji, Hesheng Sun, Baoliu Ye

PII: S1389-1286(23)00589-3
DOI: https://doi.org/10.1016/j.comnet.2023.110144
Reference: COMPNW 110144

To appear in: Computer Networks

Received date : 20 June 2023
Revised date : 15 November 2023
Accepted date : 15 December 2023

Please cite this article as: T. Cao, Q. Wang, Y. Zhang et al., Walking on two legs: Joint service
placement and computation configuration for provisioning containerized services at edges,
Computer Networks (2023), doi: https://doi.org/10.1016/j.comnet.2023.110144.

his is a PDF file of an article that has undergone enhancements after acceptance, such as the
ddition of a cover page and metadata, and formatting for readability, but it is not yet the definitive
ersion of record. This version will undergo additional copyediting, typesetting and review before it
s published in its final form, but we are providing this version to give early visibility of the article.
lease note that, during the production process, errors may be discovered which could affect the
ontent, and all legal disclaimers that apply to the journal pertain.

2023 Published by Elsevier B.V.

https://doi.org/10.1016/j.comnet.2023.110144
https://doi.org/10.1016/j.comnet.2023.110144

Journal Pre-proof

Walking on Two Legs: Joint Service Placement and Computation Configuration for

Tuo C

Abstract

With the dev network
edges is prop otential
faces multiple services’
computation o edges’
heterogeneity service.
Third, as the eoff and
urges to optim resource
isolation and is paper
investigates t services
at edges. Th nd local-
search combi ial-time
algorithm wi mputing
prototype to orithms,
in terms of 3

Keywords: C ion

1. Introduc

With the
technologies,
a promising s
chine owning
the system k
only the requ
to achieving r
quire the ad
deployment a
CaaS platform
[4], Google K
stances [6]. M
computing se
proposed to m
long service r
work (WAN)
implement se
ized services

T. Cao, Y
and B.L. Ye ar
Technology, the
Nanjing Univer

Q.H. Wang
Management, A
China.

The corresp

n its in-
ontainer
ers usu-
ubeEdge
ntainer-
ally and
hat each
resource
are used
ond, the
ces onto
ices’ re-
s.
me may
Firstly,

ntainers’
., in pro-
urge to

ments of
, but the
sources.
a Group
es. Sec-
ities and
require-
rloaded,
ring long

Computer Netw 15, 2023

Manuscript File Click here to view linked References
Jo
ur

na
l P

re
-p

ro
of

Provisioning Containerized Services at Edges

ao, Qinhui Wang, Yuhan Zhang, Zhuzhong Qian, Yue Zeng, Mingtao Ji, Hesheng Sun, Baoliu Ye

elopment of edge computing and container virtualization, provisioning containerized services at
osed for high responsiveness and low wide area network (WAN) traffic. However, realizing its full p
challenges. First, due to containers’ fine-grained computation resource isolation, finely configuring
resource requirements is needed, especially for resource-constrained edge nodes. Second, due t
and services’ diversity, system performance highly depends on which edge node to place each
main metric of quality of service, service response time involves the computing-network delay trad
ize the decisions jointly. Prior works on edge-enabled service placement either ignore computation
configuration, or assume computation resource configuration is given manually. To fill this gap, th
he joint service placement and computation configuration problem for provisioning containerized
en based on the convex and submodular optimization techniques, we propose a two-stage greedy a
ned algorithm, TeLa for short. Rigorous theoretical analyses demonstrate that TeLa is a polynom
th performance guarantees. Finally, we implement twelve containerized services and an edge co
realistically evaluate TeLa. The results confirm TeLa’s empirical superiority over state-of-the-art alg
9% on average reduction on the weighted sum of service response time and WAN traffic.

ontainerized Service Provisioning, Edge Computing, Service Placement, Computation Configurat

tion

rapid development of container virtualization
Container as a Service (CaaS) has emerged as
ervice model [1, 2, 3]. Unlike each virtual ma-
an entire operating system, containers share
ernel with the host machine and encapsulate
ired libraries and tools. Thus, in addition
untime and resource isolation, containers ac-
vantages of fast launch, low overhead, easy
nd migration, etc. Currently, representative
s include Amazon Elastic Container Service

ubernetes Engine [5] and Azure Container In-
eanwhile, edge computing, which pushes the
rvices from the cloud to the network edges, is
itigate the burden of cloud computing, i.e.,
esponse times and enormous wide area net-
traffic [7, 8]. Evolution of the two prompts to
rvices as containers and provision container-
at network edges [9, 10, 11, 12].

.H. Zhang, Z.Z Qian, Y. Zeng, M.T. Ji, H.S. Sun
e with the State Key Laboratory for Novel Software
Department of Computer Science and Technology,

sity, Nanjing Jiangsu 210023, China.
is with the Department of Military Training and
rmy Command College, Nanjing Jiangsu 210045,

onding author is Zhuzhong Qian (qzz@nju.edu.cn).

Since managing containers at edges is still i
fancy [13] and Kubernetes (K8s) is the leading c
orchestrator for cloud environments [14], practition
ally adopt a K8s-like tool (e.g., MicroK8s [15], K
[16] and K3s [17]) to manage the edge-hosted co
ized services. To be specific, they would first manu
empirically configure the amounts of resources t
containerized service exclusively occupies. The
amounts, also called the resource requirements,
for resource isolation among different services. Sec
K8s-like tool would place the containerized servi
the edge nodes, which is mainly according to serv
source requirements and nodes’ resource capacitie

Such a containerized service provisioning sche
work well for the cloud, but not for the edges.
edges’ computation resources are scarce and co
computation resource isolation is fine-grained, i.e
cessor percentages rather than numbers. They
finely configure the computation resource require
containerized services (computation configuration)
manual method is coarse-grained and wastes the re
Fig. 1 is the analysis result obtained from Alibab
[18] and reveals the computation resource wast
ondly, edges are heterogeneous in resource capac
access delays, and services are diverse in resource
ments and workloads. Besides, when edges are ove
the remaining services must stay at the cloud, bea

orks, Manuscript is under Review November

Journal Pre-proof

0 1
0.0
0.2
0.4
0.6
0.8
1.0

C
D

F

Fig. 1: CPU u
centers in recen
tainerized servi

network delay
traffic [19, 20
when decidin
vice (service
tion and serv
two-step man
uring large co
step leads to
to stay at th
work delays.
tradeoff, the

Overcomi
placement an
is challenging
decisions are
decisions are
grained comp
limited comp
delay tradeoff
that both th
(i.e., service r
respect to th
solve such pr
heterogeneity
vice placeme
[23, 24], not

Existing w
lenges. Some
ment or toge
29, 30, 31, 3
computation
incorporate t
services [23,
the computat
simply. A fe
configuration
node hosts al

To fill thi
but less stud
computation
services at ed
ing system w
which provid
ing region. W

source isolation, edges’ heterogeneity and services’ diver-
sity taken into account, we strive to minimize the weighted

der mul-
is formu-
roved to
m [42].
two de-
model

ion con-
nt prob-
ecompo-
rove the
form so-
s. After
making
be max-
over a p-
we raise
gorithm,
tions via
hem via
last, we

ithm for

t twelve
ting pro-
bed. We
der vari-
ding the
traffic,

age and
in larger
also con-
fficiency.
Section
Section

mization
m TeLa
through
ction 5,

rk edges
problem
s section
ries and
d ours.

putation

ment at
omputa-
le, Lia et
changed
Jo
ur

na
l P

re
-p

ro
of

0 20 30 40 50 60 70 80 90 100
CPU Utilization (%)

Alibaba-2017
Alibaba-2018
Alibaba-2021

tilization of containerized services in Alibaba data
t years [18], showing that more than 80% of its con-
ces have average CPU utilization less than 30%.

s and incurring monetary expenses for WAN
, 21]. It falls short to only consider resources
g which node to place each containerized ser-
placement). Lastly, computation configura-
ice placement decisions are coupled but the
ner fails to capture it. For instance, config-
mputation resource requirements in the first
low computing delays but may push services
e cloud in the second step, increasing net-
Hence, to make a computing-network delay
two decisions should be jointly optimized.
ng these limitations raises the joint service
d computation configuration problem, which
to solve. On the one hand, service placement
binary values, and computation configuration
continuous values because of containers’ fine-
utation resource isolation. However, edges’
utation resources and the computing-network
couple the two decisions deeply, in the sense

eir feasible sets and the performance metric
esponse time) are hard to be separated with
em. It is challenging to decompose and re-
oblems [22]. On the other hand, with edges’
and services’ diversity considered, the ser-

nt problem alone is hard to efficiently solve
to mention the joint optimization problem.
orks fall insufficient for handling these chal-
works focus on edge-enabled service place-

ther with request scheduling [25, 26, 27, 28,
2, 11, 12], but they neglect the service-level
resource isolation and configuration. Some
he isolation and configuration when placing
24, 33, 34, 35, 36, 37]. However, they assume
ion configuration is given manually or preset
w works optimize service-level computation
[38, 39, 40, 41], but they assume each edge
l services, or consider only one edge node.
s gap, this paper investigates the compelling
ied problem of joint service placement and
configuration for provisioning containerized
ges. Specifically, we aim at an edge comput-
ith multiple edge nodes and a remote cloud,
es containerized services for users in a serv-
ith containers’ fine-grained computation re-

sum of service response time and WAN traffic, un
tidimensional resource constraints. This problem
lated as a mixed integer nonlinear program and p
be NP-hard via the generalized assignment proble

To handle the deep coupling relationship of the
cisions, we first apply an inner-and-outer problem
and decompose the joint problem into a computat
figuration problem (inner) and a service placeme
lem (outer). Rigorous analyses show that such d
sition is nondestructive and lossless. We then p
inner problem to be convex and obtain its closed-
lution through the Karush-Kuhn-Tucker condition
bringing the solution into the outer problem and
some arrangements, we prove the outer problem to
imizing a submodular but non-monotone function
independence system. To settle its NP-hardness,
a two-stage greedy and local-search combined al
TeLa for short. It generates relatively good solu
the greedy policy in the first stage and adjusts t
the local-search policy in the second stage. At

prove that TeLa is a 4/3−ϵ
p+2+1/p -approximation algor

the joint problem and runs in polynomial time.
Upon Java 11 and Docker [43], we implemen

diverse containerized services and an edge compu
totype with four heterogeneous edges, as the test
compare TeLa with state-of-the-art algorithms un
ous scenario settings. The results show that regar
weighted sum of service response time and WAN
TeLa outperforms the baselines by 39% on aver
achieves near-optimal performance. Simulations
scales (more than 20 edges and 100 services) are
ducted and the results verify its scalability and e

The rest of this paper is organized as follows. In
2, we review the related works from two categories.
3 models the system and formulates the joint opti
problem. Section 4 presents the proposed algorith
and analyzes its performance. We evaluate TeLa
both testbed experiments and simulations in Se
and finally conclude this paper in Section 6.

2. Related Work

In recent years, provisioning services at netwo
has been a hot topic and its service placement
has drawn researchers’ attention [44, 45, 46]. Thi
reviews the most related works from two catego
highlights the differences between their studies an

2.1. Edge-enabled Service Placement without Com
Configuration

Works in this category optimize service place
network edges while ensuring the actually used c
tion resources beneath the capacities. For examp
al. [25] investigate this problem to minimize the ex

2

Journal Pre-proof

Table 1: Summary for Works on Edge-enabled Service Placement without Computation Configuration

Ref. Wo ool

[25] Gen ulation

[26] Gen ulation

[27] Gen lation

[28] Gen lation

[29] Gen ulation

[30] Gen ulation

[31] Liv ulation

[32] Liv ulation

[11] Con
M

ulation

[12] Con
M

ulation

intra-domain
supervised le
server placem
mize the user
service placem
the computat
timize service
mize the num
Poularakis et
gorithm, He
design the gre
submodular
on live strea
ment and vie
may be real-
field, Wang e
ing algorithm
rience (QoE)
a heuristic t
ity. Moreove
develops, som
optimize con
instance, Gu
container im
quest schedu
requests. No
[12] raise a re
imize service

A compre
of the worklo
terion and th
However, sin
resource isola
node practica
quality of ser

2.2. Edge-en
Configur

Works in
network edge

rom the
3] study
system

stem re-
mobility
nline al-
within a
[33] op-
to min-
ffic, and
ased on
. Cao et
ndwidth
ud gam-
the QoE
. From
al. [35]
orches-
rce edge
K3s [17]
omputa-
roviders,
. Addi-
omputa-
services,
inimize

st. Li et
comput-
rithm to
lay.
service-
comput-
putation
rvice re-
and Fan
request
Internet
de hosts
rage ca-
oreover,
Jo
ur

na
l P

re
-p

ro
of

rkload Type Technique Optimization Criterion Evaluation T

eral Services Supervised Learning Exchanged Intra-domain Traffic Trace-driven Sim

eral Services Gibbs Sampling User Request Delays Trace-driven Sim

eral Services Lyapunov Optimization,
Gibbs Sampling

Computation Latencies Synthetic Simu

eral Services Randomized Rounding Number of Edge-served Requests Synthetic Simu

eral Services Submodular Optimization Number of Edge-served Requests Trace-driven Sim

eral Services Submodular Optimization Number of Edge-served Requests Trace-driven Sim

e Streaming Deep Reinforcement Learning QoE Penalty, System Cost Penalty Trace-driven Sim

e Streaming Heuristics Popularity-weighted Video Quality Trace-driven Sim

tainer-based
icroservices

Approximately Submodular
Optimization

Number of Edge-served Requests Trace-driven Sim

tainer-based
icroservices

Heuristics Service Latency Cost, Container
Retention Cost

Trace-driven Sim

traffic and explore the performance of several
arning techniques. Dou et al. [26] study the
ent and service placement problem to mini-
request delay while Xu et al. [27] study the
ent and task offloading problem to minimize
ion latency. Besides, some works jointly op-
placement and request scheduling to maxi-

ber of edge-served requests. In this direction,
al. [28] propose a randomized rounding al-

et al. [29] and Farhadi et al. [30] respectively
edy service placement (GSP) algorithm upon
optimization. In addition, some works focus
ming services and explore the video place-
wer scheduling problem, where video streams
timely transcoded by edge nodes. In this
t al. [31] raise a deep reinforcement learn-
to minimize the penalty of quality of expe-
and system cost, while Lee et al. [32] raise

o maximize popularity-weighted video qual-
r, as the container virtualization technology
e researchers note containers’ features and

tainerized service provisioning at edges. For
et al. [11] leverage the layered structure of
ages and optimize service placement and re-
ling to maximize the number of edge-served
ting containers’ startup latencies, Pan et al.
tention-aware service caching method to min-
latency cost and container retention cost.
hensive comparison of these works, in terms
ad type, the technique, the optimization cri-
e evaluation tool, is summarized in Table 1.
ce they ignore the service-level computation
tion and configuration, services on the same
lly influence each other, which impairs the
vice and even causes service crashes.

abled Service Placement with Computation
ation

this category optimize service placement at
s, with the service-level computation resource

isolation and configuration taken into account. F
perspective of algorithm design, Pasteris et al. [2
this problem for a heterogeneous edge computing
and propose a heuristic to maximize the total sy
ward. Ouyang et al. [24] further observe the user
and the service migration cost, and propose an o
gorithm to minimize the user-perceived latency
service migration cost budget. Besides, Ma et al.
timize service placement and workload scheduling
imize service response time and outsourcing tra
develop an iterative caching update algorithm b
the idea of Gibbs sampling (GS) and water filling
al. [34] focus on the service placement and ba
allocation problem for edge-assisted mobile clo
ing, and present an online algorithm to minimize
impairment on network delays and frame rates
the perspective of system design, Goethals et
present a Kubernetes-compatible edge container
trator to place containerized services on low-resou
devices. Similar works include KubeEdge [16],
and MicroK8s [15]. However, they all assume c
tion configuration is given manually by service p
which usually wastes the computation resources
tionally, Ouyang et al. [36] consider edge nodes’ c
tion resources are evenly allocated to their hosted
and optimize user-managed service placement to m
user-perceived latencies and service switching co
al. [37] force each computing task to occupy one
ing unit and raise an improved ant colony algo
place services to minimize the service response de

Note that there are a few works studying the
level computation configuration problem for edge
ing. For example, Xiang et al. [38] optimize com
configuration and traffic scheduling to minimize se
sponse times within a computing expense budget,
et al. [39] optimize computation configuration and
assignment to minimize service response times for
of things. Nevertheless, they assume each edge no
all services regardless of edges’ memory and sto
pacities, which is oversimplified and unrealistic. M

3

Journal Pre-proof

Table 2: Summary for Works on Edge-enabled Service Placement with Computation Configuration

Ref. Wor Tool

[23] Gene ulation

[24] Gene ven
on

[33] Gene ulation

[34] Mo ven
on

[35] Con eriment

[36] Gene ulation

[37] Gene ulation

[38] Gene ulation

[39] Intern ulation

[40] A ulation

[41] Gene eriment

Al-Shuwaili e
minimize dev
ity applicatio
light-weight
edges, to min
tive (SLO) v
one edge nod

In Table 2
these works,
the computat
optimization

Different
heterogeneity
considers con
lation, and i
computation
tainerized ser
this is the fir
over, we pro
rithm for thi
through both

3. System M

In this sec
ing container
service placem
in detail. Fo
notations use

3.1. System

As illustr
ing system t

n. To be
geneous
quipped
omposed
the core
tructure
sensitive
etection,
rom the
are im-
ervices),
achines.
ly gener-
m to the
ponding
egion, it
l, a rail-

ncluding
ilability,
ality. In
orks ei-
ate their
inutes or
scheme

d events
, 41, 47].
two suc-
nutes to
wing ex-
issue of

m opera-
putation
Jo
ur

na
l P

re
-p

ro
of

kload Type Computation
Configuration

Technique Optimization
Criterion

Evaluation

ral Services Given Manually Heuristics System Reward Synthetic Sim

ral Services Given Manually Lyapunov Optimization,
Markov Approximation

User-perceived
Latencies

Trace-dri
Simulati

ral Services Given Manually Gibbs Sampling, Convex
Optimization

Response Times,
Outsourcing Traffic

Synthetic Sim

bile Cloud
Gaming

Given Manually Lyapunov Optimization,
Markov Approximation

QoE on Network
Delays, Frame Rates

Trace-dri
Simulati

tainer-based
Services

Given Manually OpenVPN, Containerd,
Namespace, Cgroup

Resource
Requirements

Testbed Exp

ral Services Shared Evenly Contextual Multi-armed
Bandit, Thompson Sampling

Perceived Latencies,
Switching Cost

Synthetic Sim

ral Services One Unit for
One Task

Ant Colony Optimization Response Delays Synthetic Sim

ral Services Optimized Lyapunov Optimization Response Times Synthetic Sim

et of Things Optimized Convex Optimization Response Times Synthetic Sim

ugmented
Reality

Optimized Successive Convex
Approximation

Device Energy
Consumption

Synthetic Sim

ral Services Optimized Dynamic Voltage and
Frequency Scaling

Latencies, SLO
Violation Ratios

Testbed Exp

t al. [40] allocate computation resources to
ice energy consumption for augmented real-
ns, while Nam et al. [41] present EdgeIso, a
scheduler that dynamically isolates tasks on
imize task latencies and service level objec-
iolation ratios. However, they consider only
e, instead of multiple heterogeneous edges.
, we summarize a side-by-side comparison of
where the aspects include the workload type,
ion configuration method, the technique, the
criterion and the evaluation tool.
from all previous works, besides the edges’
and the services’ diversity, this paper further
tainers’ fine-grained computation resource iso-
nvestigates the joint service placement and
configuration problem for provisioning con-
vices at edges. To the best of our knowledge,
st work that specializes in this issue. More-
pose a polynomial-time approximation algo-
s joint problem and evaluate the algorithm
testbed experiments and simulations.

odel and Problem Formulation

tion, we build the system model for provision-
ized services at edges and formulate the joint
ent and computation configuration problem

r ease of reference, we summarize the main
d in this paper in Table 3.

Overview

ated in Fig. 2, we consider an edge comput-
hat provides diverse computing services for

the users or end devices in a specific serving regio
precise, the system consists of i) a set N of hetero
edge nodes, deployed at the network edge and e
with limited resources; and ii) a remote cloud o, c
of massive powerful servers and located far at
network. They constitute the computing infras
for a system operator to deploy a set S of delay-
but computing-intensive services, e.g., object d
language translation, etc. In order to benefit f
container virtualization technology, the services
plemented as containers (namely, containerized s
instead of directly running on physical or virtual m
Furthermore, each user or end device stochastical
ates requests for some services, and transmits the
edge node or the cloud that is hosting the corres
service to get served. Finally, as for the serving r
may be a manufacturing factory, a shopping mal
way station or other similar areas in practice.

Note that as time goes by, the system status, i
service workloads, network delays, edge node ava
etc., may change stochastically or abruptly in re
order to adapt to the system dynamics, existing w
ther: i) adopt the slot-structured timeline and upd
decisions every some time duration (e.g., a few m
more) [24, 30, 34]; or ii) adopt the event-triggering
and update their decisions when some predefine
(e.g., severe resource contentions) are detected [31
Generally speaking, the time duration between
cessive decision updates ranges from several mi
hours, depending on the specific scenario. Follo
isting works [11, 25, 32, 37], this paper leaves the
determining when to update decisions to the syste
tor, and focuses on the service placement and com
configuration problem itself.

4

Journal Pre-proof

Table 3: Summary of Main Notations

Symbols

N/S
Cn/Mn

Gn/Bn

ms/gs
do/dn

αs

βs

λs

co

Ds/Ts

ω

Decision

xs,n

ys

† Ds is contr
ration decis

3.2. Service

Typically,
heterogeneou
the services a
loads. As a
ily depends
many compu
vices to exclu
x = (xs,n)s∈S
cision. Defin
on node n ∈
n ∈ N ∪{o}
o if n = o. As
nodes to serv

xs,

Unlike vir
among servic
the container
granularity, i
ing advantag
vices on reso
source utiliza
out loss of ge
computation
the amount o
pied by servi
in this paper

Containerized

Services

Cloud/Data Center
Tasks Waiting in

Service Queues

s.

convert
e have

(3)

cy, con-
ith their
sources.
bly con-
t limited
Cn, Mn

storage
ts mem-
obtained
to repre-
ge node
ave

(4)

(5)

(6)

rovision
f service
cifically,
rvice re-
y or the
e nodes
laced on
services
AN. On
he WAN
s per GB
so treats
proposes
he WAN
consider
requests
and the
Jo
ur

na
l P

re
-p

ro
of

Description

Set of edge nodes/containerized services
Computation/memory capacity of edge node n
Storage/bandwidth capacity of edge node n
Memory/storage requirement of service s
Network delay for communicating with remote
cloud o/edge node n
Expected computation resource demand (in
CPU cycles) per request for service s
Expected data size per request for service s
Expected arrival rate of requests for service s
Amount of computation resource that is allo-
cated to a cloud-served request
Service response time/WAN traffic per request
for service s †

Weight parameter for balancing service re-
sponse time and WAN traffic

Description

Binary variables, indicating whether service s
is placed at node n (xs,n = 1) or not (xs,n = 0)
Continuous variables, specifying the computa-
tion resource amount configured for service s
(when placed on edges) to exclusively occupy

olled by service placement and computation configu-
ions. Ts is controlled by service placement decisions.

Placement and Computation Configuration

the edge nodes together with the cloud are
s in resource capacities and access delays, and
re diverse in resource requirements and work-
consequence, the system performance heav-
on where the services are placed and how
tation resources are configured for the ser-
sively occupy. We take the binary indicators

,n∈N∪{o} to denote the service placement de-
itely, let xs,n = 1 if we place service s ∈ S
N ∪ {o}, and xs,n = 0 otherwise. Here, node
is short for edge node n if n ∈ N or the cloud
each service must be scheduled to one of the
e users, we have the following constraints:

∑
n∈N∪{o}

xs,n = 1, ∀s ∈ S, (1)

n ∈ {0, 1},∀s ∈ S, ∀n ∈ N ∪ {o}. (2)

tual machines isolating computation resources
es in the granularity of processor numbers,
virtualization technology offers a much finer
.e., processor percentages. Intuitively, by tak-
e of this property, one could place more ser-
urce-limited edge nodes, improving their re-
tion and the system performance. Thus, with-
nerality, we take y = (ys)s∈S to denote the
configuration decision. Definitely, it means
f the computation resource exclusively occu-
ce s is ys CPU cycles per second. Note that
, it is for presentation ease to use CPU cycles

Serving Requests

at Edges

Serving Requests

on Cloud
WAN

Users/End Devices

Edge Nodes

Fig. 2: Provisioning containerized services at edge

per second as the decision’s unit and we can easily
the unit into processor percentages. Therefore, w

ys ≥ 0, ∀s ∈ S.

Furthermore, to avoid the cold startup laten
tainerized services are usually kept in memory w
exclusively occupied computation and storage re
As a result, placing services on edge nodes inevita
sumes the resources of edge nodes, which are ye
and scarce. For each edge node n ∈ N , we take
and Gn to denote its computation, memory and
capacity, respectively. For each service s ∈ S, i
ory and storage resource requirement could be
through several test runs and we take ms and gs
sent them. Since the occupied resources of an ed
should be upper bounded by the capacities, we h

∑
s∈S

xs,n × ys ≤ Cn, ∀n ∈ N ,
∑

s∈S
xs,n ×ms ≤ Mn, ∀n ∈ N ,

∑
s∈S

xs,n × gs ≤ Gn, ∀n ∈ N .

3.3. Service Response Time and WAN Traffic

In general, the system operator would like to p
services for users with the best possible quality o
(QoS) and the minimum possible system cost. Spe
for the QoS, a key and widely-used metric is the se
sponse time, also known as the user-perceived dela
request delay [26, 38, 39]. Meanwhile, when edg
are heavily loaded, some services have to be p
the cloud and the user requests for cloud-hosted
have to be transmitted to the cloud across the W
this occasion, the system operator has to pay for t
traffic, where the price is usually 0.01∼0.15 dollar
[19, 20, 21]. Thus, following [33, 36], this paper al
the WAN traffic as the system cost metric, and
to minimize both the service response time and t
traffic. Furthermore, like prior works [27, 48], we
that for any service s ∈ S, the arrival of its user
follows a Poisson process with expected rate λs

5

Journal Pre-proof

computation demand per request (in CPU cycles) follows
an exponential distribution with expectation αs. Besides,
we take βs t
for service s,
tion. In prac
estimated or

When it c
WAN traffic,
is quite differ
traffic is zero
the network
delays, queui
locations of e
the average n
edge node n.
treated as an
the expected
ing time) is c

sponse time
waiting queu

ys

Besides, taki
edge node n,

∑

Whereas,
are all transm
WAN traffic
i.e., βs. The
propagation
Moreover, alt
erful servers,
are bounded,
consider that
is immediate
processing, w
Therefore, th
vice response

Hereafter
the service re
for service s ∈

Ds = xs,o

3.4. Problem

With cont
lation, edges
into account,
computation
services at ed
sum of total

subject to multidimensional resource constraints of edge
nodes. Such a problem is formulated as follows:

(1a)

(1b)

(1c)

(1d)

(1e)

, (1f)

(1g)

(1h)

bias be-
nstraints
nd band-
aint (1e)
he cloud
ch stabi-
Finally,
f service
ns.
with the
e place-
ecisions
and the
to them.
ary and
ger non-
lustrates
NP-hard
roblem.

rd.

the edge
resources.
the ob-

nstraints
. Such a
lized as-
NP-hard
.

ion con-
ation re-
es to ex-
t greatly
e service
d by the
1a)) and
int (1f)).
control
Jo
ur

na
l P

re
-p

ro
of

o denote the expected data size per request
without restricting its probability distribu-
tice, the values of these parameters could be
learned by analyzing the latest service log.
omes to modeling service response time and
placing services on edge nodes or the cloud
ent. For an edge-hosted service s, the WAN
because its user requests are all served at

edge. The response time consists of network
ng delays and computing delays. Since the
dge nodes may differ, we take dn to denote
etwork delay for users to communicate with
Moreover, the edge serving process could be
M/M/1 model in the queuing theory [49] and
sojourn time (i.e., queuing time plus comput-
alculated as αs

ys−αsλs
. Hence, the expected re-

is
∑

n∈N xs,n(dn + αs

ys−αsλs
). Stabilizing the

es yields the following constraint:

≥ αsλs, ∀s ∈ S,
∑

n∈N
xs,n = 1 (7)

ng Bn to denote the bandwidth capacity of
we get the bandwidth resource constraint as

s∈S
xs,n × λsβs ≤ Bn, ∀n ∈ N . (8)

for a cloud-hosted service s, its user requests
itted to the cloud through the WAN and the
per request is actually the expected data size,
network delay is mainly sourced from data

across the WAN and we take do to denote it.
hough the cloud has a large number of pow-
the resources for processing one user request
not infinite. Following existing works [50], we
once arriving at the cloud, any user request

ly allocated a certain amount of resources for
here the computation resource amount is co.
e queuing delay is zero and the expected ser-
time is calculated as xs,o(do +

αs

co
).

, we take Ds and Ts to respectively denote
sponse time and the WAN traffic per request
S. Then, summarizing the two cases yields

(do +
αs

co
) +

∑

n∈N
xs,n(dn +

αs

ys − αsλs
), (9)

Ts = xs,o × βs. (10)

Formulation

ainers’ fine-grained computation resource iso-
’ heterogeneity and services’ diversity taken
we jointly optimize service placement and
configuration for provisioning containerized
ges. The objective is to minimize the weighted
service response time and total WAN traffic,

P1 : min
x,y

∑

s∈S
λs ×Ds + ω

∑

s∈S
λs × Ts

s.t.
∑

s∈S
xs,n × ys ≤ Cn,∀n ∈ N ,

∑
s∈S

xs,n ×ms ≤ Mn,∀n ∈ N ,
∑

s∈S
xs,n × gs ≤ Gn,∀n ∈ N ,

∑
s∈S

xs,n × λsβs ≤ Bn,∀n ∈ N ,
∑

n∈N∪{o}
xs,n = 1,∀s ∈ S,

(1− xs,o)ys ≥ (1− xs,o)αsλs,∀s ∈ S
xs,n ∈ {0, 1},∀s ∈ S, n ∈ N ∪ {o},
ys ≥ 0,∀s ∈ S,

where ω is the weight parameter to control the
tween service response time and WAN traffic. Co
(1a)∼(1d) are the computation, memory, storage a
width resource constraints, respectively. Constr
ensures each service is placed on one edge node or t
and constraint (1f) is equivalent to Eq. (7), whi
lizes the waiting queues of edge-hosted services.
constraints (1g) and (1h) specify the domains o
placement and computation configuration decisio

Challenges to solving P1 are two-fold. First,
presence of Ds, constraint (1a) and (1f), servic
ment decisions and computation configuration d
are deeply coupled in the sense that the objective
feasible set are both hard to be split with respect
Combining it with their value domains (i.e., bin
continuous, respectively) makes P1 a mixed inte
linear program. Second, the following theorem il
that the service placement problem alone is an
problem, not to mention the joint optimization p

Theorem 1. The proposed problem P1 is NP-ha

Proof. Consider a simplified case of P1, where
nodes are assumed to have unlimited computation
Then the sojourn times of edge-hosted services in
jective function and the computation-related co
(i.e., constraint (1a) and (1f)) could be neglected
special problem is actually a multi-resource genera
signment problem, which has been proven to be
[42]. Thus, as a general case, P1 is also NP-hard

Remarks. First, we emphasize the computat
figuration decision y, which specifies the comput
source amounts configured for edge-hosted servic
clusively occupy. According to Eq. (4) and (9), i
affects the service placement decision x and th
response time Ds. Meanwhile, it is upper bounde
edge nodes’ computation capacities (constraint (
lower bounded by the services’ workloads (constra
Second, the weight parameter ω is introduced to

6

Journal Pre-proof

①

②

Fig. 3: Relation
lines indicate t
red dotted line
indirectly throu

the bias betw
the system co
that the servi
from tens of m
traffic per req
could also be
lar value scal
large value (e
tem cost, and
balance betw

4. Algorith

To solve P
and local-sea
detail, as illu
a computatio
vice placeme
subproblems
responds to a
by the Karus
optimization
transform P
desirable pro
on submodul
the performa

4.1. Problem

As aforem
program with
continuous d
the two decis
combinatoria
straightforwa
dent subprob
service respo
straint coupl
derived subp
an interactiv
decompose P
subproblems

We start
cisions, which
placement-re

and (1g), are reserved. To eliminate the influence of com-
putation configuration decisions on F , we relax constraint

get

}.

nd-outer
requires
for P1,
nfigura-
acement

s
)

on under
h noting
P2 and
putation
l service

βsλs)

, then x
oreover,

ld alter-
acement
owever,

NP-hard
to mini-
ractable.
asily ob-
That is,
the same
lies that
lossless.
P1 and
well.

nner, we
we learn
ne edge
s to say,
configu-
ases the
timality.
Jo
ur

na
l P

re
-p

ro
of

③

④

ships of problems, theorems and lemmas. The blue
hat Lemma 1 is related to P1, P2 and P3. The
indicates that P1 is eventually transformed into P5,
gh P2, P3 and P4.

een the QoS (i.e., service response time) and
st (i.e., WAN traffic). Moreover, considering
ce response time per request generally ranges
illiseconds to several seconds while the WAN
uest may range from bytes to megabytes, ω
used to normalize the two metrics to simi-
es. In practice, one could initially set ω to a
.g., 1) to restrict the WAN traffic and the sys-
gradually decrease ω to achieve the desirable
een the QoS and the system cost.

m Design

1, this section develops a two-stage greedy
rch combined algorithm, TeLa for short. In
strated in Fig. 3, we first decompose P1 into
n configuration subproblem P2 and a ser-
nt subproblem P3. Then, we split P2 into
P4 for parallelly solving, where each P4 cor-
unique edge node. Afterward, we solve P4

h-Kuhn-Tucker (KKT) conditions in convex
and bring its solutions into P3. Finally, we

3 into a set optimization problem P5 with
perties, and propose TeLa to solve P5 based
ar optimization. In the end, we also provide
nce and complexity analysis of TeLa.

Decomposition

entioned, P1 is a mixed integer nonlinear
binary decisions for service placement and

ecisions for computation configuration. Since
ions belong to different problem families, i.e.,
l optimization and numerical optimization, a
rd idea is to divide P1 into two indepen-
lems and solve them separately. However,
nse time and the computation resource con-
e the two decisions deeply, implying that the
roblems should be solved simultaneously in
e manner. This subsection specifies how we

1 to decouple the decisions and solving the
is left for the next two subsections.
with the feasible set of service placement de-
we denote by F . To define it, the service-

lated constraints, i.e., constraints (1a)∼(1e)

(1a) by leveraging constraints (1e) and (1f), and

F = {x | (1b) ∼ (1e), (1g),
∑

s∈S
xs,n × αsλs ≤ Cn,∀n ∈ N

To decompose P1, we then apply an inner-a
problem model, where solving the outer problem
the solution to the inner problem. To be specific,
the inner problem optimizes the computation co
tion decision y under a given feasible service pl
decision x ∈ F , which is formulated as

P2 : min
y

∑

s∈S

∑

n∈N
xs,n × (λsdn +

αsλs

ys − αsλ

s.t. (1a), (1f).

For presentation ease, we denote its optimal soluti
x by yx and its optimal value by Φ(x). It is wort
that the definition of F ensures the solvability of
the existence of yx. The outer problem treats com
configuration as an oracle and seeks the optima
placement decision, which is formulated as

P3 : min
x

Φ(x) +
∑

s∈S
xs,o × (λsdo +

αsλs

co
+ ω

s.t. x ∈ F .

Lemma 1. Let x be a feasible solution to P3

together with yx is a feasible solution to P1. M
P3 has the same optimal value with P1.

Proof. See Appendix A for the detailed proof.

Remarks. First, to decompose P1, one cou
natively let the inner problem optimize service pl
and let the outer for computation configuration. H
in this way, the service placement problem is still
but the computation configuration problem turns
mizing a discontinuous function, which is also int
Second, bringing P2’s objective into P3, it is e
served that P3 has the same objective with P1.
the objective value of any x ∈ F and yx on P3 is
as that on P1. Combining it with Lemma 1 imp
the decomposition method is nondestructive and
In other words, an algorithm for P3 also solves
its performance analysis for P3 applies to P1 as

4.2. Computation Configuration (Inner Problem)

Since solving the outer problem relies on the i
aim at the inner problem first. Observing P2,
that the computation configuration decision of o
node has no influence on that of another. That i
each edge node could optimize its computation
ration independently and parallelly, which decre
complexity without impairing the solution’s op

7

Journal Pre-proof

Therefore, we further split P2 into subproblems according
to the edge nodes. Precisely, we take Sx,n to denote the set
of services pla
ment decision
tion configura
yx,n = (ys)s∈
propose to so

Theorem 2.

Proof. First,
ble set is conv
of P4 by Γ(y

∂2

∂ys∂

Combining it

trix H = (∂
definite. The
feasible set. S
convex optim

As P4 is
ditions in con
optimal comp

ys =
Cn∑

where µs =
bining the de
any x ∈ F , t

ys =
∑

n∈N
x

4.3. Service

Now, wha
for service pl
the NP-hardn
is impossible
polynomial ti
efficient appr
formance. To
and rewrite P

∑

s∈S
(xs

+
∑

n∈N

Observing the objective function of P3, we learn that
the performance of placing any service on an edge node

services
roperty,
m. Let
n, where
ge node
services

n = {s ∈
gements,

sdn)

(5a)

(5b)

(5c)

(5d)

(5e)

problem,
ain com-
entation
sible set
t. In ad-
bjective
th Ω(X)

is mono-
U2 ⊆ U ,
⊆ U2 ⊆
−f(U2).

one over

ents and
(U , I) is
U2 and

re called
ependent
a subset
ty of its
nality of
(U , I) is
p.

, where
maxn∈N Bn

mins∈S λsβs
)

Jo
ur

na
l P

re
-p

ro
of

ced on edge node n ∈ N under service place-
x ∈ F , and take yx,n to denote its computa-
tion decision, i.e., Sx,n = {s ∈ S | xs,n = 1},
Sx,n . Then, for any x ∈ F and n ∈ N , we
lve the following subproblem:

P4 : min
yx,n

∑

s∈Sx,n

αsλs

ys − αsλs

s.t.
∑

s∈Sx,n

ys ≤ Cn, (4a)

ys ≥ αsλs,∀s ∈ Sx,n. (4b)

P4 is a convex optimization problem.

as the constraints of P4 are linear, the feasi-
ex. Second, we denote the objective function

x,n) and for any services s, s′ ∈ Sx,n, we have

Γ

ys′
=

=
2αsλs

(ys − αsλs)3
s = s′

= 0 s ̸= s′
.

with constraint (4b) makes the Hessian ma-
∂2Γ
ys∂ys′

)|Sx,n|×|Sx,n| of Γ(yx,n) positive semi-

refore, Γ(yx,n) is a convex function over the
umming them up, we conclude that P4 is a
ization problem.

proved to be convex, we apply the KKT con-
vex optimization [51] to it and finally get the
utation configuration decision as follows:

−∑
s′∈Sx,n

µs′

s′∈Sx,n

√
µs′

×√
µs + µs,∀s ∈ Sx,n,

αsλs is used for presentation brevity. Com-
cisions of all edge nodes, we have that given
he optimal solution to P2 is

s,n

Cn −∑
s′∈Sx,n

µs′∑
s′∈Sx,n

√
µs′

√
µs + µs,∀s ∈ S. (11)

Placement (Outer Problem)

t remains is to solve the outer problem P3

acement. Since Theorem 1 has illustrated
ess of the service placement problem and it
to optimally solve an NP-hard problem in
me unless P = NP , we move on to design an
oximation algorithm with near-optimal per-
begin with, we bring P2’s solution into P3

3’s objective function as follows:

,o(λsdo +
µs

co
+ ωβsλs) +

∑

n∈N
xs,nλsdn)

(
∑

s∈Sx,n

√
µs)

2

Cn − (
∑

s∈Sx,n
µs)

.

depends on not the service itself but the set of all
placed on that edge node. To leverage this set p
we transform P3 into a set optimization proble
X ⊆ S × N denote the service placement decisio
(s, n) ∈ X means service s ∈ S is placed on ed
n ∈ N . Given any decision X , we denote the set of
that are placed on edge node n by SX ,n, i.e., SX ,

S | (s, n) ∈ X}. Then after making some arran
we get the set optimization version of P3 as

P5 : max
X

∑

n∈N

∑

s∈SX ,n

(λsdo +
µs

co
+ ωβsλs − λ

−
∑

n∈N

(
∑

s∈SX ,n

√
µs)

2

Cn − (
∑

s∈SX ,n
µs)

s.t.
∑

s∈SX ,n

µs ≤ Cn,∀n ∈ N ,

∑
s∈SX ,n

ms ≤ Mn,∀n ∈ N ,

∑
s∈SX ,n

gs ≤ Gn,∀n ∈ N ,

∑
s∈SX ,n

λsβs ≤ Bn,∀n ∈ N ,

SX ,n ∩ SX ,n′ = ∅,∀n, n′ ∈ N , n ̸= n′.

It is worth noting that P5 is a maximization
where the objective is actually the performance g
pared to placing all services on the cloud. For pres
brevity, we still take F ⊆ 2S×N to denote the fea
of P5 and it could be distinguished by the contex
dition, we take Ω(X) : 2S×N → R to denote the o
function of P5. In what follows, we show that bo
and F have desirable properties.

Definition 1. ([52]) A set function f : 2U → R
tone if ∀U1 ⊆ U2 ⊆ U , f(U1) ≤ f(U2) or ∀U1 ⊆
f(U1) ≥ f(U2). Moreover, f is submodular if ∀U1

U and u ∈ U\U2, f(U1∪{u})−f(U1) ≥ f(U2∪{u})
Lemma 2. Ω(X) is submodular but non-monot
F .

Proof. See Appendix B for the detailed proof.

Definition 2. ([53]) Let U be a universe of elem
I be a collection of subsets of U , i.e., I ⊆ 2U .
called an independence system if: a) ∅ ∈ I; b) U1 ⊆
U2 ∈ I implies U1 ∈ I. Then, the subsets in I a
independent and the inclusive-wise maximal ind
set of U is called a basis of U . Moreover, for
T ⊆ U , its rank r(T) is defined as the cardinali
largest basis and its lower rank ρ(T) is the cardi
its smallest basis. Then, an independence system

called a p-independence system if maxT ⊆U
r(T)
ρ(T) ≤

Lemma 3. (S×N ,F) is a p-independence system
p = min {|N |(maxn∈N Cn

mins∈S µs
, maxn∈N Mn

mins∈S ms
, maxn∈N Gn

mins∈S gs
,

, |S|}.
8

Journal Pre-proof

Algorithm 1: Proposed Algorithm TeLa

Input: P
β

Output:
// Initia

1 L = S, i =
// Stage

2 while ∃(s
3 (s∗, n∗

4 X (i+1)

5 L = L
6 i = i+

// Stage

7 for j = 1
8 (s∗, n∗

9 Y(j) =
10 repea
11 if

>

12

13 els

(1

14

15 until

16 if Ω(X
17 Y(

18 X ∗ = arg

19 Obtain x
20 return x

Proof. See A

Since P5

non-monoton
propose a tw
gorithm TeL
TeLa works
tially, auxilia
(Line 1), whi
Here, L is the
i is the iterat
applies the g
(s, n) that ha
auxiliary dec
be placed on
Ω(X) is non-
cess evolves.
applies the lo
possible (Lin
j-th iteration
cal neighbors

ϵ
|X (j)| and gives the best decision Y(j) ever encountered. At

last, TeLa chooses the best solution that is found in the
original

res each
e second
j). Then
for P5,
empha-
13. It is
mplexity
nd more

lgorithm

a small
complex-
| lg |S|).
ave that
function
to Theo-
4/3−ϵ

p+2+1/p -

ptimizes
to maxi-
services
ted sum
ffic.
depends
n would
es, there
La com-
ion com-
the com-
|2|N |2).
Accord-
uting Ω
putation
| lg |S|).
mplexity
|S|).

ized ser-
te TeLa.
der var-
are also
ncy.

t twelve
covering
ent con-
enhance-
tasks of
Jo
ur

na
l P

re
-p

ro
of

roblem parameters, i.e., S, N , λs, αs,

s, do, dn, etc., algorithm parameter ϵ
Decisions x and y
lization

0,X (i) = ∅,Y(i) = ∅;
one: greedy exploration

, n) ∈ L ×N ,X (i) ∪ {(s, n)} ∈ F do
) = argmax

X (i)∪{(s,n)}∈F
Ω(X (i) ∪ {(s, n)});

= X (i) ∪ {s∗, n∗};
\ {s∗};
1;

two: local-search exploitation

, 2, 3, . . . , i do
) = argmax(s,n)∈X (j) Ω({(s, n)});
{(s∗, n∗)};
t
∃(s′, n′) ∈ X (j) \ Y(j),Ω(Y(j) ∪ {(s′, n′)})
(1 + ϵ

|X(j)|)Ω(Y
(j)) then

Y(j) = Y(j) ∪ {(s′, n′)};
e if ∃(s′, n′) ∈ Y(j),Ω(Y(j) \ {(s′, n′)})>
+ ϵ

|X(j)|)Ω(Y
(j)) then

Y(j) = Y(j) \ {(s′, n′)};
Y(j) is not updated ;
(j) \ Y(j)) > Ω(Y(j)) then

j) = X (j) \ Y(j) ;

maxX∈{X (j)}i
j=0∪{Y(j)}i

j=0
Ω(X);

from X ∗ and obtain y by Eq. (11);
and y.

ppendix C for the detailed proof.

is proved to be maximizing a submodular but
e function over a p-independence system, we
o-stage greedy and local-search combined al-
a based on the framework in [53]. In detail,
as follows (also shown in Algorithm 1). Ini-
ry decisions X (0) and Y(0) are set to empty
ch means all services are placed on the cloud.
set of services that still stay on the cloud and
ion index. Following is the first stage, which
reedy policy (Lines 2-6). TeLa puts the pair
s the largest performance margin gain into
isions in each iteration until no service could
any edge node. Since the objective function
monotone, its value may decrease as this pro-
Hence, we develop the second stage, which
cal-search policy to seek as better solutions as
es 7-17). Specifically, for decision X (j) of the
in the first stage, TeLa iteratively adopts lo-
that improve the performance by more than

whole process (Line 18) and converts it into the
decision forms, i.e., x and y (Line 19).

Remarks. First, by Lines 3 and 4, TeLa ensu
X (j) is a feasible solution to P5. Meanwhile, th
stage of TeLa ensures each Y(j) is a subset of X (

according to Lemma 3, each Y(j) is also feasible
though they are not explicitly checked. Second, we
size the algorithmic parameter ϵ in Lines 11 and
introduced to balance the performance and the co
of TeLa. In general, a smaller ϵ drives TeLa to spe
computing time to achieve better performance.

4.4. Performance Analysis

Theorem 3. TeLa is a 4/3−ϵ
p+2+1/p -approximation a

for P5, where p is defined in Lemma 3 and ϵ is
positive algorithmic parameter. Its computation
ity is O(|S|3|N |+ |S|2|N |2+ 1

ϵ |S|4 lg |S|+ 1
ϵ |S|3|N

Proof. Combining Lemma 2 and Lemma 3, we h
P5 is maximizing a non-monotone submodular
over a p-independence system. Then, according

rem 2 in [53] and Theorem 3.4 in [54], TeLa is a

approximation algorithm for P5. Note that P5 o
service placement and computation configuration
mize the performance gain compared to placing all
on the cloud, where the performance is the weigh
of total service response time and total WAN tra

The computation complexity of TeLa mainly
on the two stages. For stage one, as each iteratio
offload one service from the cloud to the edge nod
are at most |S| iterations. In each iteration, Te
putes Ω for at most |S|×|N | times. The computat
plexity for computing Ω is O(|S|+ |N |). Hence,
putation complexity of stage one is O(|S|3|N |+ |S
For stage two, the number of Y(j)s is up to |S|.
ing to [54], computing each Y(j) involves comp
for at most O(1ϵ |S|2 lg |S|) times. Thus, the com
complexity of stage two is O(1ϵ |S|4 lg |S|+ 1

ϵ |S|3|N
Summing them up, we get TeLa’s computation co
as O(|S|3|N |+|S|2|N |2+ 1

ϵ |S|4 lg |S|+ 1
ϵ |S|3|N | lg

5. Implementation and Evaluation

In this section, we implement twelve container
vices and an edge computing prototype to evalua
We compare it with state-of-the-art algorithms un
ious scenario settings. Simulations in larger scales
conducted to verify its scalability and time efficie

5.1. Testbed Implementation

Implementation Details. We first implemen
containerized services with their client programs,
language translation, speech recognition, docum
version, face recognition, word counting, photo
ment and blind watermarking. By running various

9

Journal Pre-proof

Table 4: Summary of Containerized Services

Index m † †

1
2
3
4
5
6
7
8
9
10
11
12

† The unit
requests

Edge Node

End Devices

Fig

each service o
we learn that
from 100 MB
MB to 3350
KB to 2.36 M
request αs fr
we set the re
a Poisson pro
0.1 to 3 requ
these contain

To deploy
computing s
edge nodes,
the controlle
the memory c
capacities Gn

ity Cn is set
the CPU freq
and the band
each cloud se
GHz and we
Thus, the co
cloud-execute
ing works [55
i.e., do, is set
i.e., dn, is di
specifications

Table 5: Specifications of Edge Nodes and Cloud Servers

Del.

∼15 ms

∼15 ms

∼15 ms

∼15 ms

100 ms

Node

(Edge/

Cloud)

Cloud

r Images

iners

rograms.
Java 11
trated in
atabases
and edge
nicating
ized ser-
to opti-

ation de-
atabases
er. Here,
odules,
e multi-
the CLI
erator.
2, some
lem via
ique for
e works
e greedy
r, many
ecisions
numbers
omputa-
at edges
traffic.

thms:

acement
s simul-
ively se-
marginal
ge node
s coarse-
number
aints.
Jo
ur

na
l P

re
-p

ro
of

s (MB) gs (MB) βs (KB) αs λs

800 117 20.5 3.08 1
3500 3350 2.27 84.1 0.1
800 1830 433 33.2 0.1
800 916 208 19.4 0.5
800 916 1690 14.8 0.5
100 85 14.1 0.123 3
4500 2800 1570 144 0.1
500 1120 1910 15.0 0.2
500 1120 300 12.7 0.5
2500 711 894 7.42 0.5
1000 732 619 5.23 0.2
1000 702 2360 3.57 1

s of αs and λs are giga CPU cycles per request and
per second, respectively.

s

Cloud
Servers

Controller

. 4: Infrastructure of our testbed system.

n one node for more than one hundred times,
they have memory requirements ms ranging
to 4500 MB, storage requirements gs from 85
MB, average request data sizes βs from 2.27
B, and expected computation demands per

om 0.123 to 144 giga CPU cycles. Moreover,
quest arrival pattern of each service to follow
cess, where the expected rate λs ranges from
ests per second. The detailed information of
erized services is listed in Table 4.
the containerized services, we build an edge

ystem with four heterogeneous desktops as
several servers as the cloud and a laptop as
r, as shown in Fig. 4. The edge nodes have
apacities Mn ∈ {4, 8, 16} GB and the storage
∈ {512, 1024} GB. The computation capac-
to the product of the processor number and
uency, ranging from 11.2 GHz to 19.2 GHz,
width capacity Bn is 1 Gbps. Furthermore,
rver has 32 CPUs with the frequency of 2.1
allocate 2 CPUs to any cloud-executed task.
mputation resource that is available to one
d task, i.e., co, is 4.2 GHz. Following exist-
, 36, 56], the network delay for the cloud o,
to 100 ms and that for any edge node n ∈ N ,
stributed in [5, 15] ms. We summarize their
in Table 5. Besides, three Raspberry Pis

ID CPU Mem. Sto. Ban.

EN1 12.8 GHz 8 GB 1 TB 1 Gbps 5

EN2 11.2 GHz 4 GB 512 GB 1 Gbps 5

EN3 11.2 GHz 4 GB 512 GB 1 Gbps 5

EN4 19.2 GHz 16 GB 1 TB 1 Gbps 5

Clo.† 67.2 GHz 64 GB 1 TB 1 Gbps
† The specifications of one cloud server.

Cloud

Command Line Interface (CLI)

System
Manager

(Multi-thread)

Scheduler
& Allocator

Node Database
Service

Database

Node Proxy

Container Engine

CS 1 CS 2

Search

Database

Update

Database

Make

Decision

User Command
Push

Node Info

Release

Service Conf

Image Repository

Fetch Containe

…

Push

Service Info

MySQL MySQL

TeLa

Launch Conta

Fig. 5: Framework of our testbed system.

are used to act as end devices to run the client p
Then we implement our testbed system using

and Docker [43] with its image repository. As illus
Fig. 5, the system consists of six modules. The d
maintain the information of containerized services
nodes, respectively. The node proxy is for commu
with the system manager and launching container
vices. The scheduler and allocator invokes TeLa
mize service placement and computation configur
cisions, where the inputs are obtained from the d
and the outputs are returned to the system manag
the parameter ϵ is set to 10−2. Based on these m
the system manager controls the system with th
thread mechanism for high responsiveness. Lastly,
module is used for interacting with the system op

Benchmarks. As shown in Table 1 and Table
existing works solve the service placement prob
Gibbs sampling, which is an optimization techn
general combinatorial problems [26, 27, 33]. Som
note the problem’s submodularity and propose th
service placement algorithm [29, 30, 11]. Moreove
works consider the computation configuration d
are given manually in the granularity of processor
[23, 24, 33, 34]. Intuitively, configuring smaller c
tion resources makes one to place more services
to achieve shorter network delays and lower WAN
Thus, we compare TeLa with the following algori

• GSP-C is a variant of the greedy service pl
algorithm [29] and makes the two decision
taneously. For service placement, it iterat
lects the pair (s, n) that has the highest
performance gain and places service s on ed
n. Its computation configuration decision i
grained, and is set to the minimum processor
that meets the computation resource constr

10

Journal Pre-proof

Table 6: Number of Cloud-hosted Services under Various Weights

Alg.

We

GS-C

GSP-C

TeLa

Optimal

• GS-C
the sam
GSP-C
ized loc
random
with a
parame
the dec

• Optim
and ma
tive sea
plexity

For every
over 15 minu
quests are re
may differ in
these algorit
WAN traffic
time and WA
erwise, the ex

5.2. Testbed

Since the
between serv
decision-mak
first conduct
We initially
Table 6 show
cloud-hosted
than 10−4, a
cloud to red
loaded. In th
constant and
ω. On the ot
response tim
traffic, and th
stable, especi
order to invo
better make
in the followi
by default, o

Then we
rithms’ perfo
illustrate the
of ω drives t

GS-C GSP-C TeLa Optimal

5.0 18)

5e-5 1e-5
er

ters.

rtheless,
S-C and
weighted
, thanks
eLa and
nd place
contrast,
i.e., 5 to
Second,
eLa and
guration
adopting
guration
tion re-
e. Note
he same
ices onto
se time,
iversity.
e impact
orkloads
and full
cities to
orkloads
to 0.5λs,
es or de-
nse time
re capa-
tion be-
apacities
number
of GS-C
services
t among
oads de-
ad more
ly adapt
t among
TeLa re-
GSP-C
ely.
Jo
ur

na
l P

re
-p

ro
of

i.
10−2 10−3 10−4 10−5 10−6 0

5 5 5 8 10 11

5 5 5 9 9 11

3 3 3 7 7 7

2 2 3 7 7 8

is a variant of Gibbs sampling [33] and shares
e computation configuration method with

. For service placement, it uses a random-
al-search-based policy. In each iteration, it
ly selects one of the neighbors and adopts it
performance-related probability. We set its
ter to 10−4 (small enough) and stop it when
ision has been unchanged for 10 iterations.

al uses our computation configuration method
kes the service placement decision by exhaus-
rch. It has the exponential computation com-
and takes a long time to complete.

experiment setting, we run the system for
tes, during which more than 7000 user re-
ceived and processed. Since the system runs
total request numbers, we mainly compare

hms in terms of response time per request,
per request and the weighted sum of response
N traffic per request. Unless specified oth-
periment settings are the same as above.

Evaluation Results

weight parameter ω, which controls the bias
ice response time and WAN traffic, affects the
ing process and the system performance, we
preliminary experiments to decide its value.
set ω to 1 and gradually reduce it to 0, and
s the main results regarding the number of
services. On the one hand, when ω is greater
s less services as possible are placed at the
uce WAN traffic and the edges are heavily
is case, the cloud-hosted service number turns
it seems the algorithms are irrespective of
her hand, when ω is less than 10−5, service
e becomes much more important than WAN
e algorithms’ decisions tend to be relatively
ally for TeLa and Optimal. In conclusion, in
lve and evaluate the impact of ω, we would
its value in the range of [10−4, 10−5]. Hence,
ng experiments, we either set ω to 5 × 10−5

r vary its value from 10−4 to 10−5.
conduct experiments to compare the algo-
rmance under various weight parameters, and
results in Fig. 6. As expected, a larger value
he algorithms to focus more on WAN traffic

1e-4 7.5e-5 5e-5 2.5e-5 1e-5
Weight parameter

0.5

1.0

1.5

2.0

2.5

3.0

C
os

t p
er

 re
qu

es
t (

s+
B

)

1e-4 7.5e-5 5e-5 2.5e-5 1e-5
Weight parameter

0.0

1.0

2.0

3.0

4.0

W
ei

gh
te

d
su

m
 p

er
 re

qu
es

t (
s+

B
)

0

6

12

W
A

N
 tr

af
fic

 p

er
 re

qu
es

t (
K

B

1e-4 7.5e-5 5e-5 2.
Weight paramet

0.0

1.5

3.0

4.5

R
es

po
ns

e
tim

e
 p

er
 re

qu
es

t (
s)

Fig. 6: Testbed results under various weight parame

and less on response time, and vice versa. Neve
TeLa and Optimal always perform better than G
GSP-C, with a 29.7% to 61.5% reduction on the
sum per request. The reasons are two-fold. First
to the fine-grained computation configuration, T
Optimal can make full use of edges’ resources a
fewer services (i.e., 3 to 7) on the cloud. By
GS-C and GSP-C have to place more services (
9) on the cloud and generate more WAN traffic.
due to the application of convex optimization, T
Optimal can make the optimal computation confi
decision to minimize response time. Whereas,
a heuristic and coarse-grained computation confi
method, GS-C and GSP-C utilize the computa
sources inefficiently and bear longer response tim
that though TeLa and Optimal sometimes have t
cloud-hosted service number, they may place serv
different nodes and perform differently in respon
as a result of edges’ heterogeneity and services’ d

Next, in Fig. 7(a) and Fig. 7(b), we measure th
of edges’ computation capacities and services’ w
on the algorithms’ performance. Here, low, high
capacities refer to setting edges’ computation capa
Cn

3 , 2Cn

3 and Cn, and light, medium and heavy w
refer to setting the expected request arrival rates
λs and 1.5λs. Clearly, increasing edges’ capaciti
creasing services’ workloads result in lower respo
and WAN traffic, since edges become relatively mo
ble. However, the algorithms differ in the adapta
haviors. For instance, when edges’ computation c
advance from low to full, the cloud-hosted service
of TeLa and Optimal changes from 7 to 5, that
changes from 8 to 6, while GSP-C still places 7
on the cloud and only adapts service placemen
the heterogeneous edges. When services’ workl
crease from heavy to light, GS-C and GSP-C offlo
services to edges while TeLa and Optimal main
computation configuration and service placemen
the edges. In summary, covering such variations,
duces the weighted sum per request of GS-C and
by 24.4% to 42.2% and 26.9% to 42.6%, respectiv

11

Journal Pre-proof

1e-4 7.5e-
Wei

0.5

1.0

1.5

2.0

2.5

3.0

C
os

t p
er

 re
qu

es
t (

s+
B

)

GS-C GSP-C TeLa Optimal

Low(1/3)
Degree of

0.0

1.0

2.0

3.0

4.0

5.0

W
ei

gh
te

d
su

m
 p

er
 re

qu
es

t (
s+

B
)

18)

(a)

1e-4 7.5e-
Wei

0.5

1.0

1.5

2.0

2.5

3.0

C
os

t p
er

 re
qu

es
t (

s+
B

)

GS-

Light(0.5) M
Degr

0.0

1.0

2.0

3.0

4.0

5.0

W
ei

gh
te

d
su

m
 p

er
 re

qu
es

t (
s+

B
)

Fig. 7: Testbed
ities and servic

To furthe
the request a
form, and vis
respectively.
quests every
bursts, while
of user reque
onds. Due to
tern variation
sions. Thus,
and their pe
However, con
change notab
requests to w
driving the a
the uniform p
creases queui
sponse time
to 74.8% and
the optimized
TeLa could u

5.3. Simulati

To furthe
larger scales

GS-C GSP-C TeLa Optimal

5.0 18)

5e-5 1e-5
er

n)

al

5e-5 1e-5
er

rn)

tterns.

30, and
resource
lemented
numbers
ct on the
l has the
an unac-
an hour
ormance
ge nodes
ans that
nd more
o longer
ulations,
services
On the

orter re-
esources
gs, TeLa
ted sum

, we run
z CPU,
ices and
s absent
Jo
ur

na
l P

re
-p

ro
of

5 5e-5 2.5e-5 1e-5
ght parameter

High(2/3) Full(1)
computation capacity

0

6

12

W
A

N
 tr

af
fic

 p

er
 re

qu
es

t (
K

B

Low(1/3) High(2/3) Full(1)
Degree of computation capacity

0.0

1.5

3.0

4.5

R
es

po
ns

e
tim

e
 p

er
 re

qu
es

t (
s)

Impact of edges’ computation capacities

5 5e-5 2.5e-5 1e-5
ght parameter

C GSP-C TeLa Optimal

edium(1) Heavy(1.5)
ee of workload

0

6

12

18

W
A

N
 tr

af
fic

 p

er
 re

qu
es

t (
K

B
)

Light(0.5) Medium(1) Heavy(1.5)
Degree of workload

0.0

1.5

3.0

4.5

R
es

po
ns

e
tim

e
 p

er
 re

qu
es

t (
s)

(b) Impact of services’ workloads

results under various edge node computation capac-
e workloads.

r evaluate the robustness of TeLa, we change
rrival patterns from Poisson to burst and uni-
ualize their effects in Fig. 8(a) and Fig. 8(b),
In the burst pattern, users send service re-
ten seconds, leading to a series of workload
in the uniform pattern, the time intervals

sts are uniformly distributed in [0.5λs
, 1.5
λs

] sec-
the unawareness of the request arrival pat-
s, these algorithms do not adapt their deci-
their cloud-hosted services remain the same
rformances on WAN traffic hardly change.
cerning the response time, their performances
ly. In detail, the burst pattern makes more
ait in queue and bear longer queuing delays,
lgorithms to perform poorer. By contrast,
attern makes request arrivals steady and de-
ng delays. Nonetheless, TeLa reduces the re-
per request of GS-C and GSP-C by 35.2%
25.2% to 70.2%. It implies that thanks to
and fine-grained computation configuration,
tilize the resources more effectively.

on Evaluation Results

r evaluate TeLa’s scalability, simulations in
are also conducted. Specifically, the service

1e-4 7.5e-5 5e-5 2.5e-5 1e-5
Weight parameter

0.5

1.0

1.5

2.0

2.5

3.0

C
os

t p
er

 re
qu

es
t (

s+
B

)

1e-4 7.5e-5 5e-5 2.5e-5 1e-5
Weight parameter

0.0

1.0

2.0

3.0

4.0

W
ei

gh
te

d
su

m
 p

er
 re

qu
es

t (
s+

B
)

0

6

12

W
A

N
 tr

af
fic

 p

er
 re

qu
es

t (
K

B

1e-4 7.5e-5 5e-5 2.
Weight paramet

0.0

1.5

3.0

4.5

R
es

po
ns

e
tim

e
 p

er
 re

qu
es

t (
s)

(a) Impact of request arrival patterns (burst patter

1e-4 7.5e-5 5e-5 2.5e-5 1e-5
Weight parameter

0.5

1.0

1.5

2.0

2.5

3.0

C
os

t p
er

 re
qu

es
t (

s+
B

)

GS-C GSP-C TeLa Optim

1e-4 7.5e-5 5e-5 2.5e-5 1e-5
Weight parameter

0.0

1.0

2.0

3.0

4.0

5.0

W
ei

gh
te

d
su

m
 p

er
 re

qu
es

t (
s+

B
)

0

6

12

18

W
A

N
 tr

af
fic

 p

er
 re

qu
es

t (
K

B
)

1e-4 7.5e-5 5e-5 2.
Weight paramet

0.0

1.5

3.0

4.5

R
es

po
ns

e
tim

e
 p

er
 re

qu
es

t (
s)

(b) Impact of request arrival patterns (uniform patte

Fig. 8: Testbed results under various request arrival pa

and edge node numbers are by default 150 and
their specifications (e.g., resource capacities and
requirements) are uniformly sampled from our imp
services and edge nodes. We then vary the two
from 100 to 200 and 20 to 40, and show their impa
algorithms in Fig. 9. Due to the fact that Optima
exponential computation complexity and spends
ceptably long time to compute, e.g., more than
for even 10 edges and 30 services, we omit its perf
here and focus on the rest algorithms. Since the ed
are resource-limited, a larger service number me
the edges are more likely to be heavily loaded a
services would be placed on the cloud, leading t
response time and larger WAN traffic. In our sim
the average cloud-hosted service ratio under 100
is 48.7% and that under 200 services is 67.7%.
contrary, a larger edge node number leads to sh
sponse time and smaller WAN traffic, since more r
are deployed near the users. Covering these settin
achieves a 15.8% to 42.2% reduction on the weigh
per request, implying that TeLa scales well.

Finally, to evaluate the time efficiency of TeLa
these algorithms on an Intel Core I7-7800X@3.5GH
and show their computing times for 50∼300 serv
25∼150 edge nodes in Table 7. Here, Optimal i

12

Journal Pre-proof

Table 7: Computing Times of the Algorithms (in Milliseconds)

|S|

|N|

25 150

50 5 22
100 15 140
150 47 406
200 79 958
250 187 1817
300 219 3105

2
0

1

2

3

4

C
os

t p
er

 re
qu

es
t (

s+
B

)

100 12
Number of

0.0

1.0

2.0

3.0

4.0

W
ei

gh
te

d
su

m
 p

er
 re

qu
es

t (
s+

B
)

2
0

1

2

3

4

C
os

t p
er

 re
qu

es
t (

s+
B

)

20 2
Numb

0.0

1.0

2.0

3.0

4.0

W
ei

gh
te

d
su

m
 p

er
 re

qu
es

t (
s+

B
)

Fig. 9: Simulat
node numbers.

again due to
extremely lon
iterative algo
and its compu
lution space.
time for 25 e
now overload
feasible solut
GS-C and GS
making finer-
Nevertheless,
(or 200) and e
real-world sc
second, show

urce iso-
ty taken
e place-
ing con-
e greedy
on con-
approxi-
xity. At
g proto-
state-of-
tend this
re edges
orkload

by com-
P2. We
.
ction of
here

s

sλs
),

s).

essed as

r x}.
(A.1)

x∗
1 with

optimal
s.
uations:

mization
hile, Eq.
and y,
Jo
ur

na
l P

re
-p

ro
of

GS-C GSP-C TeLa
50 75 100 125 150 25 50 75 100 125 150 25 50 75 100 125

8 16 16 16 31 ≤3 ≤3 ≤3 ≤3 ≤3 5 5 9 12 15 19
13 31 43 46 63 ≤3 5 9 10 16 18 30 49 73 95 117
34 50 63 66 94 7 10 15 24 34 47 95 158 223 301 340
47 63 85 94 110 16 30 47 58 78 93 206 393 520 679 843
119 93 94 125 141 31 78 125 157 203 250 370 735 945 1285 1545
133 120 140 156 172 86 172 258 359 437 532 455 1366 1651 2190 2554

0 25 30 35 40
Number of edge nodes

GS-C GSP-C TeLa

100 125 150 175 200
Number of containerized services

0

0.8

1.6

2.4

R
es

po
ns

e
tim

e
 p

er
 re

qu
es

t (
s)

0

11

22

33

W
A

N
 tr

af
fic

pe

r r
eq

ue
st

 (K
B

)

5 150 175 200
 containerized services

(a) Impact of service number

0 25 30 35 40
Number of edge nodes

GS-C GSP-C TeLa

20 25 30 35 40
Number of edge nodes

0

0.8

1.6

2.4

R
es

po
ns

e
tim

e
 p

er
 re

qu
es

t (
s)

0

11

22

33

W
A

N
 tr

af
fic

 p

er
 re

qu
es

t (
K

B
)

5 30 35 40
er of edge nodes

(b) Impact of edge node number

ion results under various service numbers and edge

its exponential computation complexity and
g computing times. Besides, as a randomized
rithm, GS-C may search a small solution set
ting time not surely scales with the whole so-
For example, it spends an unexpectedly long
dges and 300 services, because the edges are
ed and it has to spend more time in finding a
ion in each iteration. Moreover, compared to
P-C, TeLa indeed spends a little more time in
grained computation configuration decisions.
when the system has services less than 250
dges less than 75 (or 150), which covers many
enarios, TeLa’s computing time is within one
ing that TeLa is time efficient.

6. Conclusion

With containers’ fine-grained computation reso
lation, edges’ heterogeneity and services’ diversi
into account, this paper jointly optimizes servic
ment and computation configuration for provision
tainerized services at edges. We propose a two-stag
and local-search combined algorithm TeLa based
vex and submodular optimization, and prove its
mation ratio and polynomial computation comple
last, we evaluate TeLa upon an edge computin
type and the result verifies its superiority over
the-art algorithms. In our future work, we will ex
joint problem to cover a wide area scenario, whe
in different serving regions could cooperate and w
scheduling should be incorporated.

Appendix A. The Proof of Lemma 1

Proof. The first statement could be easily proved
bining the definition of F and the constraints of
omit its proof and focus on the second statement

During this proof, we rewrite the objective fun
P1 as Υ(x,y) + Ψ(x) for presentation brevity, w

Υ(x,y) =
∑

s∈S

∑
n∈N

xs,n × (λsdn +
αsλ

ys − α

Ψ(x) =
∑

s∈S
xs,o × (λsdo +

αsλs

co
+ ωβsλ

Then, the objective function of P3 could be expr
Φ(x) + Ψ(x), and according to P2, we have

Φ(x) = min{Υ(x,y) | y is feasible to P2 unde

To proceed, let v∗1 be the optimal value of P1 and
y∗
1 be one of its optimal solutions. Let v∗3 be the

value of P3 and x∗
3 be one of its optimal solution

1) proving v∗3 ≤ v∗1 . We have the following ineq

Φ(x∗
3) + Ψ(x∗

3) ≤ Φ(x∗
1) + Ψ(x∗

1)

≤ Υ(x∗
1,y

∗
1) + Ψ(x∗

1).

The first inequality holds because P3 is a mini
problem and x∗

3 is its optimal solution. Meanw
(A.1) guarantees that for any feasible solution x

13

Journal Pre-proof

we have Φ(x) ≤ Υ(x,y). Therefore, the second inequality
holds. Combining these inequations with v∗3 = Φ(x∗

3) +
Ψ(x∗

3) and v∗1
2) proving

this lemma, x
As a consequ

Υ(x∗
1

The inequalit
P1. The equ
to P2. Then

Putting v
which means

Appendix B

Proof. To pr
X ⊆ X ′ ⊆ S
such that X
feasible. The

Ω(X ∪ {(e,

=λe(do − dn)

−
(Cn − (

∑

Ω(X ′ ∪ {(e,

=λe(do − dn)

−
(Cn − (

∑

Two insig
as X is a sub
SX ,n ⊆ SX ′,n

∑

Thus, we hav
Ω(X ′), which
it is easy to s
positive or ne
have negative
overloaded, a
non-monoton

Appendix C

Proof. Obvio
we could pla
cording to th
ble solution

Thus, (S × N ,F) is an independence system. As for

determining p, we first have max r(T)
T) = 1,

gest and
tly there
e focus

one, i.e.,
one ser-
(T) ≥ 1.
at most
of T is
r(T) ≤
also re-
sely, the
ost is at
n∈N Bn

∈S λsβs
}.

N
r(T)
ρ(T) ≤

∈N Bn

S λsβs
), |S|}.

ement ar-
cloud en-
) 7. doi:

open.com/

chalakelis,
tainer-as-
lling Prac-
j.simpat.

icle/pii/

, F. Has-
roservices
: A Con-
d Sciences
isciplinary
93.

e

services/

uting: Vi-
rnal 3 (5)
of Things

ing, Com-

ontainer-
pberry Pi
on Future
, 2016, pp.

uting De-
spberryPi,
e on Dis-
ssociation
, pp. 1–10.
Jo
ur

na
l P

re
-p

ro
of

= Υ(x∗
1,y

∗
1) + Ψ(x∗

1) yields v
∗
3 ≤ v∗1 .

v∗1 ≤ v∗3 . According to the first statement of
∗
3 with yx∗

3 is also a feasible solution to P1.
ence, we have

,y∗
1) + Ψ(x∗

1) ≤ Υ(x∗
3,y

x∗
3) + Ψ(x∗

3)

= Φ(x∗
3) + Ψ(x∗

3).

y holds due to the optimality of x∗
1 and y∗

1 for
ality holds since yx∗

3 is the optimal solution
similar to the first case, we get v∗1 ≤ v∗3 .

∗
3 ≤ v∗1 and v∗1 ≤ v∗3 together, we have v∗1 = v∗3 ,
P3 has the same optimal value with P1.

. The Proof of Lemma 2

ove this lemma, we consider any two subsets
×N and any element (e, n) ∈ S × N \ X ′,
, X ′, X ∪ {(e, n)} and X ′ ∪ {(e, n)} are all
n, the margin gains at X and X ′ are

n)})− Ω(X)

+
µe

co
+ ωβeλe −

µe + 2
√
µe(

∑
s∈SX ,n

√
µs)

Cn − (
∑

s∈SX ,n
µs)− µe

µe(
∑

s∈SX ,n

√
µs)

2

s∈SX ,n
µs))(Cn − (

∑
s∈SX ,n

µs)− µe)
,

n)})− Ω(X ′)

+
µe

co
+ ωβeλe −

µe + 2
√
µe(

∑
s∈SX′,n

√
µs)

Cn − (
∑

s∈SX′,n
µs)− µe

µe(
∑

s∈SX′,n

√
µs)

2

s∈SX′,n
µs))(Cn − (

∑
s∈SX′,n

µs)− µe)
.

hts are found from the above equations. First,
set of X ′, we have for any edge node n ∈ N ,
. Then the following inequalities hold:
∑

s∈SX ,n

µs ≤
∑

s∈SX′,n
µs,

s∈SX ,n

√
µs ≤

∑
s∈SX′,n

√
µs.

e Ω(X ∪{(e, n)})−Ω(X) ≥ Ω(X ′∪{(e, n)})−
proves the submodularity of Ω(X). Second,
ee that Ω(X ∪ {(e, n)})−Ω(X) is not surely
gative. Intuitively, a large set of X tends to
margin gains since the edge nodes are now
nd vice versa. As a consequence, Ω(X) is
e.

. The Proof of Lemma 3

usly, an empty set is a subset of F , since
ce all services on the cloud. Moreover, ac-
e constraints of P5, a subset X of a feasi-
X ′ ∈ F is also feasible, implying X ∈ F .

T ⊆S×N ,|T |≤1 ρ(

where r(T) and ρ(T) is the cardinality of the lar
the smallest basis of T , respectively, since curren
is at most one service involved in T . Then w
on any subset whose cardinality is larger than
T ⊆ S ×N , |T | > 1. Since we could place at least
vice at edges in practical scenarios, we have min ρ
Moreover, as each service could be placed on
one node, the cardinality of any independent set
bounded by the service number, leading to max
|S|. Meanwhile, the limited resources of edges
strict the number of edge-hosted services. Preci
number of services that each edge node could h
most min{maxn∈N Cn

mins∈S µs
, maxn∈N Mn

mins∈S ms
, maxn∈N Gn

mins∈S gs
, max
mins

Summarizing these cases, we finally have maxT ⊆S×

min {|N |(maxn∈N Cn

mins∈S µs
, maxn∈N Mn

mins∈S ms
, maxn∈N Gn

mins∈S gs
, maxn

mins∈
Following Definition 2 yields the expression of p.

References

[1] M. K. Hussein, M. H. Mousa, M. A. Alqarni, A plac
chitecture for a container as a service (CaaS) in a
vironment, Journal of Cloud Computing 8 (1) (2019
10.1186/s13677-019-0131-1.
URL https://journalofcloudcomputing.springer

articles/10.1186/s13677-019-0131-1

[2] V. Liagkou, G. Fragiadakis, E. Filiopoulou, C. Mi
T. Kamalakis, M. Nikolaidou, A pricing model for Con
a-Service, based on hedonic indices, Simulation Mode
tice and Theory 115 (2022) 102441. doi:10.1016/

2021.102441.
URL https://www.sciencedirect.com/science/art

S1569190X21001362

[3] A. Saboor, M. F. Hassan, R. Akbar, S. N. M. Shah
san, S. A. Magsi, M. A. Siddiqui, Containerized Mic
Orchestration and Provisioning in Cloud Computing
ceptual Framework and Future Perspectives, Applie
12 (12) (2022) 5793, number: 12 Publisher: Multid
Digital Publishing Institute. doi:10.3390/app121257
URL https://www.mdpi.com/2076-3417/12/12/5793

[4] Amazon Elastic Container Service (Amazon ECS).
URL https://aws.amazon.com/ecs/

[5] Google Kubernetes Engine (GKE).
URL https://cloud.google.com/kubernetes-engin

[6] Azure Container Instances.
URL https://azure.microsoft.com/en-us/

container-instances/

[7] W. Shi, J. Cao, Q. Zhang, Y. Li, L. Xu, Edge Comp
sion and Challenges, IEEE Internet of Things Jou
(2016) 637–646, conference Name: IEEE Internet
Journal. doi:10.1109/JIOT.2016.2579198.

[8] M. Satyanarayanan, The emergence of edge comput
puter 50 (1) (2017) 30–39, publisher: IEEE.

[9] C. Pahl, S. Helmer, L. Miori, J. Sanin, B. Lee, A C
Based Edge Cloud PaaS Architecture Based on Ras
Clusters, in: 2016 IEEE 4th International Conference
Internet of Things and Cloud Workshops (FiCloudW)
117–124. doi:10.1109/W-FiCloud.2016.36.

[10] P. Bellavista, A. Zanni, Feasibility of Fog Comp
ployment based on Docker Containerization over Ra
in: Proceedings of the 18th International Conferenc
tributed Computing and Networking, ICDCN ’17, A
for Computing Machinery, New York, NY, USA, 2017

14

Journal Pre-proof

doi:10.1145/3007748.3007777.
URL https://doi.org/10.1145/3007748.3007777

[11] L. Gu, D
croservice
IEEE INF
munication
INFOCOM42

[12] L. Pan, L.
Caching fo
2022 - IEE
pp. 1069–1
2022.9796

[13] P. Kayal,
stration, L
in: 2020 I
IoT), 2020

[14] Kubernete
(2022).
URL http

[15] MicroK8s
URL http

[16] KubeEdge
URL http

[17] K3s: Light
URL http

[18] Alibaba cl
URL http

[19] Huawei Cl
URL h

html#/ecs

[20] Google Cl
URL http

[21] AWS Clou
URL http

[22] D. Paloma
ods for net
Areas in C
Name: IE
doi:10.11

[23] S. Pasteris
with prova
tems, in:
puter Com

[24] T. Ouyang
Aware Dyn
IEEE JSA

[25] G. Lia, M
V. Loscr̀ı,
tasks in a
(2022) 109
URL http

S13891286

[26] J. Dou, F
ment Com
erogeneous
nal of Gr
s10723-02

URL http

[27] J. Xu, L.
floading fo
IEEE INF
munication
8485977.

[28] K. Poular
las, Joint
mobile edg
IEEE Con
pp. 10–18.

[29] T. He, H. K
to Share:
Edge Clou

2018 IEEE 38th International Conference on Distributed Com-
puting Systems (ICDCS), 2018, pp. 365–375, iSSN: 2575-8411.

amfroush,
t Schedul-
in: IEEE
mmunica-

Intelligent
arning for
onference
918.
-Oriented
ers, IEEE
503–2516,
omputing.

e Service
Comput-
on Com-
641-9874.

, Adaptive
uter Net-
1.108704.
icle/pii/

: Kuber-
-Resource
Z. Zheng
es Toward
ringer In-
:10.1007/

tive User-
uting: An
019-IEEE
2019, pp.

Selection
in Multi-
ems Man-
09703-2.
2

in, Com-
ge Service
e on Web
CWS49710.

cation for
s Journal
nternet of

66

urce Allo-
d Reality
ers 6 (3)
mmunica-

/7906521/

eIso: Ef-
in: 2020
rocessing
530-2075.

document/

alized As-
T. Stützle
ns, EURO
Jo
ur

na
l P

re
-p

ro
of

. Zeng, J. Hu, B. Li, H. Jin, Layer Aware Mi-
Placement and Request Scheduling at the Edge, in:
OCOM 2021 - IEEE Conference on Computer Com-
s, 2021, pp. 1–9, iSSN: 2641-9874. doi:10.1109/

981.2021.9488779.
Wang, S. Chen, F. Liu, Retention-Aware Container
r Serverless Edge Computing, in: IEEE INFOCOM
E Conference on Computer Communications, 2022,
078, iSSN: 2641-9874. doi:10.1109/INFOCOM48880.

705.
Kubernetes in Fog Computing: Feasibility Demon-
imitations and Improvement Scope : Invited Paper,
EEE 6th World Forum on Internet of Things (WF-
, pp. 1–6. doi:10.1109/WF-IoT48130.2020.9221340.
s: Production-Grade Container Orchestration

s://kubernetes.io/

- Zero-ops Kubernetes for developers, edge and IoT.
s://microk8s.io/

, KubeEdge.
s://kubeedge.io/

weight Kubernetes.
s://k3s.io/

uster data.
s://github.com/alibaba/clusterdata

oud.
ttps://www.huaweicloud.com/pricing/calculator.

oud.
s://cloud.google.com/vpc/network-pricing

d.
s://aws.amazon.com/ec2/pricing/on-demand/

r, M. Chiang, A tutorial on decomposition meth-
work utility maximization, IEEE Journal on Selected
ommunications 24 (8) (2006) 1439–1451, conference
EE Journal on Selected Areas in Communications.
09/JSAC.2006.879350.
, S. Wang, M. Herbster, T. He, Service placement
ble guarantees in heterogeneous edge computing sys-
IEEE INFOCOM 2019-IEEE Conference on Com-
munications, IEEE, 2019, pp. 514–522.
, Z. Zhou, X. Chen, Follow Me at the Edge: Mobility-
amic Service Placement for Mobile Edge Computing,
C 36 (10) (2018) 2333–2345.
. Amadeo, G. Ruggeri, C. Campolo, A. Molinaro,
In-network placement of delay-constrained computing
softwarized intelligent edge, Computer Networks 219
432. doi:10.1016/j.comnet.2022.109432.
s://www.sciencedirect.com/science/article/pii/

22004662

. Yuan, J. Cao, X. Meng, X. Ma, Z. Guo, Place-
bination between Heterogeneous Services and Het-
Capacitated Servers in Edge Computing, Jour-

id Computing 21 (1) (2023) 16. doi:10.1007/

3-09644-3.
s://doi.org/10.1007/s10723-023-09644-3

Chen, P. Zhou, Joint Service Caching and Task Of-
r Mobile Edge Computing in Dense Networks, in:
OCOM 2018 - IEEE Conference on Computer Com-
s, 2018, pp. 207–215. doi:10.1109/INFOCOM.2018.

akis, J. Llorca, A. M. Tulino, I. Taylor, L. Tassiu-
service placement and request routing in multi-cell
e computing networks, in: IEEE INFOCOM 2019-
ference on Computer Communications, IEEE, 2019,

hamfroush, S. Wang, T. La Porta, S. Stein, It’s Hard
Joint Service Placement and Request Scheduling in
ds with Sharable and Non-Sharable Resources, in:

doi:10.1109/ICDCS.2018.00044.
[30] V. Farhadi, F. Mehmeti, T. He, T. La Porta, H. Kh

S. Wang, K. S. Chan, Service Placement and Reques
ing for Data-intensive Applications in Edge Clouds,
INFOCOM 2019-IEEE Conference on Computer Co
tions, IEEE, 2019, pp. 1279–1287.

[31] F. Wang, C. Zhang, J. Liu, Y. Zhu, H. Pang, L. Sun,
edge-assisted crowdcast with deep reinforcement le
personalized QoE, in: IEEE INFOCOM 2019-IEEE C
on Computer Communications, IEEE, 2019, pp. 910–

[32] D. Lee, Y. Kim, M. Song, Cost-Effective, Quality
Transcoding of Live-Streamed Video on Edge-Serv
Transactions on Services Computing 16 (4) (2023) 2
conference Name: IEEE Transactions on Services C
doi:10.1109/TSC.2023.3256425.

[33] X. Ma, A. Zhou, S. Zhang, S. Wang, Cooperativ
Caching and Workload Scheduling in Mobile Edge
ing, in: IEEE INFOCOM 2020 - IEEE Conference
puter Communications, 2020, pp. 2076–2085, iSSN: 2
doi:10.1109/INFOCOM41043.2020.9155455.

[34] T. Cao, Y. Jin, X. Hu, S. Zhang, Z. Qian, B. Ye, S. Lu
provisioning for mobile cloud gaming at edges, Comp
works 205 (2022) 108704. doi:10.1016/j.comnet.202
URL https://www.sciencedirect.com/science/art

S138912862100565X

[35] T. Goethals, F. De Turck, B. Volckaert, FLEDGE
netes Compatible Container Orchestration on Low
Edge Devices, in: C.-H. Hsu, S. Kallel, K.-C. Lan,
(Eds.), Internet of Vehicles. Technologies and Servic
Smart Cities, Lecture Notes in Computer Science, Sp
ternational Publishing, Cham, 2020, pp. 174–189. doi
978-3-030-38651-1_16.

[36] T. Ouyang, R. Li, X. Chen, Z. Zhou, X. Tang, Adap
managed Service Placement for Mobile Edge Comp
Online Learning Approach, in: IEEE INFOCOM 2
Conference on Computer Communications, IEEE,
1468–1476.

[37] C. Li, Q. Zhang, C. Huang, Y. Luo, Optimal Service
and Placement Based on Popularity and Server Load
access Edge Computing, Journal of Network and Syst
agement 31 (1) (2022) 15. doi:10.1007/s10922-022-
URL https://doi.org/10.1007/s10922-022-09703-

[38] Z. Xiang, S. Deng, F. Jiang, H. Gao, J. Tehari, J. Y
puting Power Allocation and Traffic Scheduling for Ed
Provisioning, in: 2020 IEEE International Conferenc
Services (ICWS), 2020, pp. 394–403. doi:10.1109/I

2020.00058.
[39] Q. Fan, N. Ansari, Application Aware Workload Allo

Edge Computing-Based IoT, IEEE Internet of Thing
5 (3) (2018) 2146–2153, conference Name: IEEE I
Things Journal. doi:10.1109/JIOT.2018.2826006.
URL https://ieeexplore.ieee.org/document/83368

[40] A. Al-Shuwaili, O. Simeone, Energy-Efficient Reso
cation for Mobile Edge Computing-Based Augmente
Applications, IEEE Wireless Communications Lett
(2017) 398–401, conference Name: IEEE Wireless Co
tions Letters. doi:10.1109/LWC.2017.2696539.
URL https://ieeexplore.ieee.org/document

authors#authors

[41] Y. Nam, Y. Choi, B. Yoo, H. Eom, Y. Son, Edg
fective Performance Isolation for Edge Devices,
IEEE International Parallel and Distributed P
Symposium (IPDPS), 2020, pp. 295–305, iSSN: 1
doi:10.1109/IPDPS47924.2020.00039.
URL https://ieeexplore.ieee.org/abstract/

9139806

[42] V. Maniezzo, M. A. Boschetti, T. Stützle, The Gener
signment Problem, in: V. Maniezzo, M. A. Boschetti,
(Eds.), Matheuristics: Algorithms and Implementatio

15

Journal Pre-proof

Advanced Tutorials on Operational Research, Springer Inter-
national Publishing, Cham, 2021, pp. 3–33. doi:10.1007/

978-3-030

URL http

[43] Docker En
URL http

[44] F. A. Sala
Placement
puting Sur
URL http

[45] B. Sonkoly
vey on Pl
Communic
conference
doi:10.11

URL http

[46] H. Tabata
C. Cabrer
in Multi-A
view, IEE
IEEE Acc
URL http

[47] Z. Ma, S.
J. Wu, S. L
Offloading
and Distri
Name: IEE
doi:10.11

URL http

[48] L. Chen,
Energy-Co
works, IEE
1619–1632
working. d

[49] V. Sundar
PHI Learn

[50] S. Sundar,
nication D
2018 - IEE
pp. 37–45.

[51] S. Boyd, S
Cambridge

[52] G. L. Nem
sis of app
tions—I, M
doi:10.10

URL http

[53] A. Gupta
strained N
and Secre
and Netwo
Springer, B
978-3-642

[54] U. Feige,
monotone
40 (4) (20
Applied M
URL http

[55] A. Saman
enue Max
Constraint
3872, con
doi:10.11

[56] H. Tan, Z
and schedu
Conferenc
9.

Tuo Cao received the B.S. degree from
the Department of Computer Science and

ersity, in
towards
ervision
Nanjing
ge com-
and op-
ublished
ferences
he Cisco
1.

., M.S.,
Univer-
ectively,
ow with
and Man-
e, China.
lude Mo-
omput-

S degree
ence and
of Sci-

e is cur-
nder the
ng Qian
Science
sity. His
e place-

full pro-
omputer
mber of
vel Soft-
rsity, P.
. Degree
puting,

ing. He
projects
research
N, TC,
ICDCS,
rds from

egree in
rmation
iversity,
e is cur-
. degree
science

rsity, China.
ederated
unctions
comput-
Jo
ur

na
l P

re
-p

ro
of

-70277-9_1.
s://doi.org/10.1007/978-3-030-70277-9_1

gine.
s://www.docker.com/

ht, F. Desprez, A. Lebre, An Overview of Service
Problem in Fog and Edge Computing, ACM Com-
veys 53 (3) (2020) 65:1–65:35. doi:10.1145/3391196.
s://dl.acm.org/doi/10.1145/3391196

, J. Czentye, M. Szalay, B. Németh, L. Toka, Sur-
acement Methods in the Edge and Beyond, IEEE
ations Surveys & Tutorials 23 (4) (2021) 2590–2629,
Name: IEEE Communications Surveys & Tutorials.
09/COMST.2021.3101460.
s://ieeexplore.ieee.org/document/9502167

baee Malazi, S. R. Chaudhry, A. Kazmi, A. Palade,
a, G. White, S. Clarke, Dynamic Service Placement
ccess Edge Computing: A Systematic Literature Re-
E Access 10 (2022) 32639–32688, conference Name:
ess. doi:10.1109/ACCESS.2022.3160738.
s://ieeexplore.ieee.org/document/9738624

Zhang, Z. Chen, T. Han, Z. Qian, M. Xiao, N. Chen,
u, Towards Revenue-Driven Multi-User Online Task
in Edge Computing, IEEE Transactions on Parallel
buted Systems 33 (5) (2022) 1185–1198, conference
E Transactions on Parallel and Distributed Systems.
09/TPDS.2021.3105325.
s://ieeexplore.ieee.org/document/9516964

S. Zhou, J. Xu, Computation Peer Offloading for
nstrained Mobile Edge Computing in Small-Cell Net-
E/ACM Transactions on Networking 26 (4) (2018)
, conference Name: IEEE/ACM Transactions on Net-
oi:10.1109/TNET.2018.2841758.
apandian, Probability, statistics and queuing theory,
ing Pvt. Ltd., 2009.
B. Liang, Offloading Dependent Tasks with Commu-
elay and Deadline Constraint, in: IEEE INFOCOM
E Conference on Computer Communications, 2018,
doi:10.1109/INFOCOM.2018.8486305.
. P. Boyd, L. Vandenberghe, Convex optimization,
university press, 2004.
hauser, L. A. Wolsey, M. L. Fisher, An analy-

roximations for maximizing submodular set func-
athematical Programming 14 (1) (1978) 265–294.

07/BF01588971.
s://doi.org/10.1007/BF01588971

, A. Roth, G. Schoenebeck, K. Talwar, Con-
on-monotone Submodular Maximization: Offline
tary Algorithms, in: A. Saberi (Ed.), Internet
rk Economics, Lecture Notes in Computer Science,
erlin, Heidelberg, 2010, pp. 246–257. doi:10.1007/

-17572-5_20.
V. S. Mirrokni, J. Vondrák, Maximizing Non-

Submodular Functions, SIAM Journal on Computing
11) 1133–1153, publisher: Society for Industrial and
athematics. doi:10.1137/090779346.
s://epubs.siam.org/doi/abs/10.1137/090779346

ta, Z. Chang, Adaptive Service Offloading for Rev-
imization in Mobile Edge Computing With Delay-
, IEEE Internet of Things Journal 6 (2) (2019) 3864–
ference Name: IEEE Internet of Things Journal.
09/JIOT.2019.2892398.
. Han, X.-Y. Li, F. C. Lau, Online job dispatching
ling in edge-clouds, in: IEEE INFOCOM 2017-IEEE
e on Computer Communications, IEEE, 2017, pp. 1–

Technology, Xian Jiaotong Univ
2019. He is currently working
the Ph.D. degree under the sup
of Professor Zhuzhong Qian in

University, China. His research interests include ed
puting, distributed systems, scheduling algorithms
timization theory. To date, his research has been p
in journals such as Computer Networks, and in con
such as IWQoS, WoWMoM, MSN. He received t
best paper candidate award from WoWMoM 202

Qinhui Wang received his B.S
and Ph.D. degrees from Nanjing
sity in 2007, 2011, and 2015, resp
all in computer science. He is n
Department of Military Training
agement, Army Command Colleg
His current research interests inc
bile Wireless Networks, Cloud C

ing and Edge Computing.

Yuhan Zhang received the B
from the School of Computer Sci
Engineering, Nanjing University
ence and Technology, in 2021. H
rently pursuing the MS degree u
supervision of Professor Zhuzho
in the Department of Computer
and Technology, Nanjing Univer

research interests include edge computing, servic
ment, and intelligent inference.

Zhuzhong Qian is currently a
fessor at the Department of C
Science and Technology, and me
National Key Laboratory for No
ware Technology, Nanjing Unive
R. China. He received his PhD

in 2007. His research interests include cloud com
edge computing, and distributed machine learn
is the chief member of several national research
on cloud computing and edge computing. His
has been published in journals such as TPDS, TO
and TMC, and in conferences such as INFOCOM,
SECON, and IPDPS. He received best paper awa
IMIS 2013, ICA3PP 2014 and APNet 2018.

Yue Zeng received the M.S. d
the department of electronic info
engineering from Southwest Un
Chongqing, China, in 2019. H
rently working toward the Ph.D
in the department of computer
and technology in Nanjing Unive
His research interests include f

learning, deep reinforcement learning, network f
virtualization, distributed computing, and edge

16

Journal Pre-proof

ing. He has published over ten papers in relevant jour-
nals and conferences, including IEEE Transactions on Ser-
vice Comput
cations(TCO
ing(TCC), an

ing in journa
and in confer
IEEE ISPA.
data analytic

versity. He w
Alberta, Can
machine lear

puter and In
2018. His cu
tributed syst
over 70 pape
nals. Prof. Y
Hot-POST11
Secretary-Ge
tributed Com
Jo
ur

na
l P

re
-p

ro
of

ing (TSC), IEEE Transactions on Communi-
M), IEEE Transactions on Cloud Comput-
d Computer Networks (COMNET), etc.

Mingtao Ji received the B.E. degree from
the College of Computer Science and Tech-
nology, Nanjing University of Aeronau-
tics and Astronautics of in 2018. He is
currently pursuing the PhD degree under
the supervision of Professor Zhuzhong Qian
in Nanjing University. To date, he has
already published over 7 papers, includ-

ls such as IEEE TON, Electric Power ICT,
ences such as IEEE ICC, IEEE INFOCOM,
His research interests include P4 switch, big
s and distributed machine learning.

Hesheng Sun received the BS degree
from the Department of Computer Sci-
ence and Technology, Xi’an Jiaotong Uni-
versity in 2020. He is currently pursuing
the PhD degree under the supervision of
Professor Zhuzhong Qian in Nanjing Uni-

as a visiting student with the University of
ada in 2018. His research interests include
ning and edge computing.

Baoliu Ye is a full professor at Depart-
ment of Computer Science and Technol-
ogy, Nanjing University. He received his
Ph.D. in computer science from Nanjing
University, China in 2004. He served as
a visiting researcher of the University of
Aizu, Japan from March 2005 to July
2006, and the Dean of School of Com-

formation, Hohai University since January
rrent research interests mainly include dis-
ems, cloud computing, wireless networks with
rs published in major conferences and jour-
e served as the TPC co-chair of HotPOST12,
, P2PNet10. He is the regent of CCF, the
neral of CCF Technical Committee of Dis-
puting and Systems.

17

Journal Pre-proof

CRediT Authorship Contribution Statement

T

D

Q

Y

Z

Y

M

H

B

Author Statement
Jo
ur

na
l P

re
-p

ro
of

uo Cao: Conceptualization, Methodology, Formal Analysis, Software, Writing - Original

raft

inhui Wang: Methodology, Validation, Writing - Review & Editing

uhan Zhang: Methodology, Validation, Writing - Review & Editing

huzhong Qian: Supervision, Project Administration

ue Zeng: Methodology, Validation, Writing - Review & Editing

ingtao Ji: Writing - Review & Editing

esheng Sun: Writing - Review & Editing

aoliu Ye: Supervision, Validation

Journal Pre-proof

Decla

 Th ps ☒
that

 Th red ☐
as po

Jo
ur

na
l P

re
-p

ro
of

ratio if ioterettt

e authors declare that they have no known competng fnancial interests or personal relatonshi
could have appeared to infuence the work reported in this paper.

e authors declare the following fnancial interests/personal relatonships which may be conside
tental competng interests:

	Walking on two legs: Joint service placement and computation configuration for provisioning containerized services at edges
	CRediT authorship contribution statement
	Data availability

