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A B S T R A C T

In network function virtualization(NFV)-enabled software defined networks, the controller needs to frequently
update the flow forwarding rules in the data plane to adapt to dynamic changes in network topologies or
service requests. However, inconsistent rule updates may lead to blackholes, loops, transient congestion or
policy violations (e.g., packets do not traverse designated network functions in a specific order), resulting in
service interruption and throughput degradation. Therefore, this paper proposes an effective rule consistent
update mechanism to avoid the above four problems simultaneously, while improving network throughput
and satisfying user requests. Specifically, we first build three effective models to avoid blackholes, loops,
and policy violations. Then, considering that network function nodes may change the sizes of their processed
flows, we build a congestion avoidance model based on traffic changes to avoid congestion, which can reduce
unnecessary rule update delays and packet loss. Subsequently, we prove that the consistent update problem
constructed above is NP-hard, and then design an effective heuristic rule consistent update algorithm to obtain
the rule update sequence that can simultaneously avoid blackholes, loops, congestion, and policy violations.
Extensive trace-driven simulation results show that compared with the existing update methods, our proposed
method can improve the success rate by up to 20.6% and reduce the maximum link utilization by up to 7.5%.
1. Introduction

Software defined networking (SDN) has been widely used in load
balancing and failure recovery by separating the control and data
planes, which greatly simplifies network management [1]. To im-
prove network performance and implement network policies, service
providers may apply network functions based services, such as fire-
walls, VPN agents, and intrusion detection systems [2]. However, tra-
ditional network functions are implemented by dedicated hardware
devices, with disadvantages such as high cost and difficulty in scal-
ing [3]. Network function virtualization (NFV) changes the implemen-
tation of network functions by running software on general hardware,
making deployment of network functions more flexible [4]. Benefiting
from SDN and NFV, service providers can efficiently manage net-
works and flexibly deploy network functions, thereby reducing capital
expenditures and operating expenses [5].

In NFV-enabled SDNs, the routing paths of flows may be updated
frequently due to load balancing or topology changes to improve ser-
vice performance. In a dynamic environment, cloud resources may need
to be reconfigured to save energy [6] or costs [7], which may also result
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in updates to flow routing paths. Moreover, topology changes may be
caused by node and link failures, in which case the routing paths of
flows on failed links or nodes need to be changed in order to maintain
service. In order to update the flow path, the SDN controller with a
global network view in the control plane needs to instruct the switches
in the data plane to update their flow forwarding rules. However, rule
updates may be inconsistent due to the difference of the processing
delay among switches and that of the communication delay between
the switch and the controller [8,9].

Unfortunately, inconsistent rule updates may result in the following
four problems. (1) Blackhole problem: A blackhole may occur, when
packets arrive at a switch and the switch does not have corresponding
forwarding rules, which may result in packet loss and traffic transmis-
sion interruption [10]. (2) Loop problem: A loop occurs when packets
are forwarded back and forth among switches, which may result in
packet loss [11]. (3) Policy violation problem: A policy is violated when
packets do not pass through specified network function nodes in a spe-
cific order, which is unacceptable for the security-critical service [12].
vailable online 6 April 2023
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Fig. 1. Examples are given to illustrate blackholes, loops, policy violations and transient congestion caused by inconsistent updates. The solid and dashed lines represent the old
and new paths respectively. (1) Blackhole: If switch 1 has modified the rule of flow 𝑓1, and switch 4 has not added its rule, switch 4 is regarded as a blackhole. (2) Loop: If switch
4 has updated the rule of flow 𝑓2, and switch 3 still uses its old rule, a loop 4 → 3 → 4 may occur. (3) Policy violation: Gray nodes 2 and 3 are network function nodes. If switch
2 has updated the rules of flow 𝑓2 and switch 4 has not updated its rules, the packets of flow 𝑓2 will arrive at the destination from 1 → 2 → 4 → 5, causing network function
node 3 to be bypassed. (4) Transient congestion: Assuming that the capacity of each link is 1 unit, and the flow sizes of 𝑓3 and 𝑓4 are 0.5 and 0.8. If switch 1 has updated the
rule for flow 𝑓3 but not for flow 𝑓4, the total load on link (1, 3) is 0.5 + 0.8 = 1.3, which exceeds the link capacity.
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(4) Transient congestion problem: Transient congestion means that dur-
ing rule updates, the total load on the link may exceed the link capacity,
which may also lead to packet loss and performance degradation [1].
To elaborate on the above four issues, we give examples as shown in
Fig. 1.

Currently, some existing works [13,14] have studied how to avoid
blackholes and loops, and have proposed efficient heuristic algorithms
to calculate the update order of rules. Moreover, several novel meth-
ods [1,8,9,15,16] have been proposed to avoid blackholes, loops and
congestion simultaneously. However, these methods ignore policy con-
sistency and may fail to meet user requirements. For example, when
the access to the Intranet server needs to be strictly restricted, the
incoming flows may first go through the firewall (FW) and then through
the intrusion detection system (IDS) [5]. If FW or IDS is bypassed by
packets, it may cause the network to be attacked, which is unacceptable
for security-critical environments [12]. Therefore, some works [12,17–
20] have studied how to avoid blackholes, loops and policy violations.
However, the above works do not consider the simultaneous avoidance
of blackholes, loops, congestion, and policy violations, which may lead
to unmet service requirements and throughput reduction.

Therefore, in this paper, we propose a novel rule consistent update
mechanism that can simultaneously avoid blackholes, loops, policy
violations, and congestion, which helps improve network throughput
and meet service requests. Specifically, in order to avoid blackholes, we
divide the new path into several segments, and then build an update
dependency graph according to these segments. The dependency graph
represents the update order of rules. To avoid loops, we identify the
critical nodes that determine whether the loop is formed, and then
build a dependency graph based on the critical nodes. To avoid policy
violations, we first analyze two cases where a waypoint (i.e., network
function node) may be bypassed, i.e., one case is that a node is the
precursor of a waypoint in the old path and the successor of that
waypoint in the new path, and the other case is opposite. Then, we
construct the corresponding dependency graph for the above situation.
Moreover, to resolve conflicts between the above dependency graphs,
we use a tag matching method that instructs the switch to apply which
rules based on tags, which helps improve the success rate.

To avoid congestion, we build a congestion avoidance model based
on traffic changes to ensure that incoming traffic on each link does not
exceed its capacity. Because, after a flow is processed by waypoints,
its size may be changed [21,22]. For example, the Citrix NetScaler
SD-WAN WAN optimizer can compress the processed traffic to 20%
of its original traffic, and the BCH(63,48) encoder for satellite com-
munications can increases the traffic volume of the processed flow
by 31% due to the checksum overhead [22]. If the traffic change
2

is ignored when avoiding congestion, it may lead to a long update
time1 or link congestion.2 Thus, we introduce traffic change factors and
delay the update of some flows on potentially congested links to avoid
congestion, which can effectively reduce update time and packet loss.
Subsequently, we design an effective rule consistent update algorithm
to find an update sequence that can avoid blackholes, loops, congestion,
and policy violations at the same time. The main contributions of this
paper are as follows:

• We analyze the reasons for the problems of blackholes, loops,
and policy violation during the update, and construct three cor-
responding dependency graphs to avoid these problems. Subse-
quently, we build a conflict avoidance model to resolve conflicts
between dependency graphs, which can improve the success rate
of consistent updates.

• We reveal the cause of congestion considering traffic change
and build a congestion avoidance model based on traffic change
factors, which can effectively reduce update time and packet
loss. And then we prove that the consistent update problem
constructed above is NP-hard.

• We design an effective heuristic rule update algorithm to obtain
the rule update order that can simultaneously avoid blackholes,
loops, congestion, and policy violations.

• Extensive trace-driven simulation results show that compared
with the existing update methods, our proposed method can
improve the success rate by up to 20.6% and reduce the maximum
link utilization by up to 7.5%.

The rest of this paper is organized as follows. Section 2 discusses
the related works of consistent update. In Section 3, we construct
the corresponding avoidance models to solve the four problems of
inconsistent update. In Section 4, we propose a rule consistent update
algorithm. Section 5 introduces simulation settings and results analysis.
Finally, Section 6 concludes this paper.

2. Related work

In this section, we introduce the existing consistent update methods,
which can be roughly divided into three categories. The concise com-
parison between our proposed method and existing methods is listed in
Table 1.

The first category is how to avoid blackholes and loops during the
update. Basta et al. [23] studied how to avoid loops while minimizing

1 For example, switch 1 depicted in Fig. 1(c) is a waypoint, and its traffic
hange factor is 0.7. The sizes of flows 𝑓3 and 𝑓4 are 0.5 and 0.8 respectively.
f the traffic change factor is ignored, the load on link (1, 3) in the worst case is
.5+0.8 = 1.3, thus the update of flow 𝑓3 will be delayed to avoid congestion.
his is unnecessary if the traffic change factor is considered, which can prolong
he unnecessary update time.

2 For example, the traffic change factor of switch 1 in Fig. 1(c) is 1.1, and
he sizes of flows 𝑓3 and 𝑓4 are 0.4 and 0.6 respectively. If the traffic change
actor is ignored, they can be updated simultaneously, and the actual load
ink (1, 3) is (0.4 + 0.6) ∗ 1.1 = 1.1, which exceeds the link capacity and causes
congestion.
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Table 1
Related work.

Reference Objective (avoid) Methods

Blackhole Loop Congestion Policy violation Conflict Ordered
replacement

Tag matching Combine ordered
replacement and
tag matching

[14] ✔ ✔ ✘ ✘ ✘ ✔ ✘ ✘

CSU [15] ✔ ✔ ✔ ✘ ✘ ✔ ✘ ✘

DRF [12] ✔ ✔(partial) ✘ ✔ ✘ ✔ ✘ ✘

DSF [12] ✔ ✔ ✘ ✔ ✘ ✔ ✘ ✘

FLIP [19] ✔ ✔ ✘ ✔ ✔(partial) ✘ ✘ ✔

This paper ✔ ✔ ✔(traffic change) ✔ ✔ ✘ ✘ ✔
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the number of controller-switch interactions. Zhou et al. [24] intro-
duced a concept of relaxed loop-free to speed up the updating. But
these methods ignore other consistent properties. To avoid blackholes
and loops, Maity et al. [13] proposed a multilevel queuing approach
to ensure package-level consistency and Li et al. [14] proposed a rule
composition method based on abstract algebra to reduce the number of
rule operations.

The second category is how to avoid blackholes, loops, and con-
gestion during the update. Jin et al. [8] used the global resource
dependency graph to dynamically update the rules to avoid blackholes,
loops, and congestion, but this method is time-consuming. In order to
reduce the update time, some works [1,25] divided the global update
dependencies into local update dependencies, Coeus [16] eliminated
redundant operations in update events, DART [26] reduced the data
plane load, and Chronus+ [9] used the switch buffer to cache the
verload flows. Based on [1], Song et al. [15] designed a consistent
cheduling update (CSU) algorithm to further reduce the updating time
y updating some of the flows that need to be moved in the potential
ongestion link in advance. In addition, Bera et al. [27] proposed an
daptive flow rule placement scheme to maximize the number of flows
hile increasing the visibility of the network. However, the above
ethods ignore that the size of a flow may change after being processed

y the network function nodes, leading to packet loss and unnecessary
pdate delays.

The third category is how to avoid blackholes, loops, and policy
iolations during the update. Reitblatt et al. [18] guaranteed blackhole-
ree, loop-free, and policy consistency by tagging packets on the ingress
witch and installing matching rules on other switches along the path.
owever this approach requires the old and new rules to be installed
n the switch simultaneously, which increases TCAM (ternary content
ddressable memory) overhead. To reduce TCAM overhead, Ludwig
t al. [12,17] designed two novel update algorithms, DRF and DSF, to
eplace the old rules by calculating a specific order. The DSF algorithm
nsures that there are no loops at any time, and the DRF algorithm only
nsures that there are no loops in the current path from the source
ode. However, the applicability of the ordered replacement method
i.e., replacing the old rules by calculating a specific order) is limited,
nd the order guaranteeing both loop-free and policy consistency may
ot exist [19,20]. To resolve the conflict between policy consistency
nd loop-free, Vissicchio et al. [19,20] proposed an efficient update
ethod called FLIP that combines ordered replacement and tag match-

ng to avoid blackholes, loops, and policy violations. However, this
ethod allows packets to traverse a limited number of loops when
ealing with conflicts, which may result in packet loss.

In all, almost all of the previous works only focused on dealing
ith some of the four problems of blackholes, loops, congestion, and
olicy violations rather than consider solving these four problems
imultaneously, which may lead to service interruption and packet
oss. Therefore, in order to improve network throughput and meet user
emands, we propose an effective rule update mechanism, which can si-
ultaneously avoid blackholes, loops, congestion and policy violations.
3
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Table 2
List of key notations.

Notation Description

𝑃 𝑛
𝑓 New path of flow 𝑓

𝑃 𝑜
𝑓 Old path of flow 𝑓

𝐺𝑓 The Segment node set of flow 𝑓
𝑆𝑓 Segments of the new path of flow 𝑓
𝐻𝑓 The loops formed by the old and new paths of flow 𝑓
𝑊 The set of waypoints that each packet must pass through
𝑅𝑓 Circles between dependency graphs of flow 𝑓
𝑦(𝑢,𝑣)𝑓 The size of flow 𝑓 on the link (𝑢, 𝑣)
𝑦𝑢−𝑓 , 𝑦𝑢+𝑓 The size of flow 𝑓 before and after being processed by node 𝑢
𝑐(𝑢, 𝑣) The capacity of link (𝑢, 𝑣)
𝛤 (𝑢, 𝑣) The set of flows that need to be removed from the link (𝑢, 𝑣), but

have not yet been removed from the link (𝑢, 𝑣)
𝛹 (𝑢, 𝑣) The set of unchanged flows on link (𝑢, 𝑣)
𝛷(𝑢, 𝑣) The set of new flows that have been moved into the link (𝑢, 𝑣)

3. Problem formulation

In this section, we formulate the consistent update (CSUD) problem,
which is able to avoid blackholes, loops, policy violations, and con-
gestion during the update. In the following, rule updates on nodes are
simplified as node updates. For convenience, we summarize important
notations in Table 2.

3.1. Blackhole-free update

To ensure blackhole-free updates, we propose a blackhole avoidance
method, which is mainly divided into three steps.

In the first step, we find the segment nodes 𝐺𝑓 that control the flow
𝑓 switching path, where the segment nodes [25] refer to common nodes
of old path 𝑃 𝑜

𝑓 and new path 𝑃 𝑛
𝑓 with different next hops. That is, each

egment node 𝑔𝑓 ∈ 𝐺𝑓 is a common node of the old and new paths, and
t has different next hops in the old and new paths. Similar to [4,5], the
ld and new paths are generated based on the Dijkstra algorithm [28].3
hus, the segment node set 𝐺𝑓 can be expressed as

𝑓 ={𝑔𝑓 |𝑔𝑓 ∈ 𝑃 𝑜
𝑓 ∩ 𝑃 𝑛

𝑓 , 𝑛(𝑔𝑓 , 𝑃
𝑜
𝑓 ) ≠ 𝑛(𝑔𝑓 , 𝑃 𝑛

𝑓 )}, (1)

here 𝑛(𝑔𝑓 , 𝑃 𝑜
𝑓 ) and 𝑛(𝑔𝑓 , 𝑃 𝑛

𝑓 ) represent the next hops of node 𝑔𝑓 in the
ld and new paths.

In the second step, we divide the new path 𝑃 𝑛
𝑓 into several segments,

alled segment paths, where segment paths refer to the paths after
ividing the new path based on segment nodes. For example, there is
new path 𝐴 → 𝐵 → 𝐶, segment node 𝐺𝑓 = 𝐵, then the segment

aths are 𝐴 → 𝐵, 𝐵 → 𝐶. After the division, each segment path 𝑠 ∈ 𝑆𝑓
tarts with a segment node or source node 𝑃 𝑛

𝑓 .𝑠𝑡𝑎𝑟𝑡 and ends with a
egment node or destination node 𝑃 𝑛

𝑓 .𝑒𝑛𝑑. There are no overlapping

3 Note that our solution is equally compatible with old and new paths
enerated by other algorithms.
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Fig. 2. Bypass waypoint. The blue solid and red dashed lines represent the old and new paths of flow 𝑓3, and the gray nodes are waypoints. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
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nodes between segments, except that adjacent segments share the start
or end node. Thus, the segment path set 𝑆𝑓 can be expressed as

𝑆𝑓 ={𝑠 ∣ 𝑠 ⊆ 𝑃 𝑛
𝑓 , 𝑠.𝑠𝑡𝑎𝑟𝑡 ∈ 𝐺𝑓 ∪ 𝑃 𝑛

𝑓 .𝑠𝑡𝑎𝑟𝑡,

𝑠.𝑒𝑛𝑑 ∈ 𝐺𝑓 ∪ 𝑃 𝑛
𝑓 .𝑒𝑛𝑑,∀𝑠

′ ∈ 𝑆𝑓 ,

𝑠 ∩ 𝑠′ = ∅ 𝑜𝑟 = 𝑠.𝑒𝑛𝑑 ≡ 𝑠′.𝑠𝑡𝑎𝑟𝑡

𝑜𝑟 = 𝑠.𝑠𝑡𝑎𝑟𝑡 ≡ 𝑠′.𝑒𝑛𝑑}.

(2)

In the third step, we construct update dependency graphs based
n segment paths 𝑆𝑓 to avoid blackholes. In each segment path, as
ong as the nodes 𝑠 ⧵ {𝑠.𝑠𝑡𝑎𝑟𝑡, 𝑠.𝑒𝑛𝑑} in the segment path are updated
efore the starting node 𝑠.𝑠𝑡𝑎𝑟𝑡, it can be guaranteed that there are no
lackholes [25]. Therefore, the dependency graph in each segment path
an be constructed as follows

(𝑠) = 𝑠.𝑠𝑡𝑎𝑟𝑡 ⇀ {𝑛|𝑛 ∈ 𝑠 ⧵ {𝑠.𝑠𝑡𝑎𝑟𝑡, 𝑠.𝑒𝑛𝑑}}. (3)

Algorithm 1 Blackhole Avoidance
Input: flow 𝑓 , old path 𝑃 𝑜

𝑓 , new path 𝑃 𝑛
𝑓

Output: blackhole-free dependency graph 𝐵𝐻 , segment paths 𝑆𝑓 ,
segment nodes 𝐺𝑓

1: Get segment nodes 𝐺𝑓 according to Eq. (1);
2: 𝑘 = 𝑃 𝑛

𝑓 [0];
3: while 𝑘 ∈ 𝑃 𝑛

𝑓 do
4: 𝑠 = 𝑘;
5: 𝑚 = the next hop of 𝑘 on 𝑃 𝑛

𝑓 ;
6: while 𝑚 ≠ ∅ ∧ 𝑚 ∉ 𝐺𝑓 do
7: 𝑠 = 𝑠 → 𝑚;
8: 𝑘 = 𝑚,𝑚 = the next hop of 𝑘 on 𝑃 𝑛

𝑓 ;
9: end while
0: 𝑠 = 𝑠 → 𝑚,𝑆𝑓 = 𝑆𝑓 ∪ 𝑠;
1: Get the blackhole-free dependency graph 𝑑(𝑠) according to

Eq. (3);
2: 𝐵𝐻 = 𝐵𝐻 ∪ 𝑑(𝑠), 𝑘 = 𝑚;
3: end while

The details of constructing the blackhole-free dependency graph
re shown in Algorithm 1. First, we obtain the segment nodes 𝐺𝑓

according to Eq. (1). Then, we traverse the new path of flow 𝑓 , adding
non-segment nodes to a segment until meeting a segment node or
destination node (lines 3–10). We finally obtain the blackhole-free
dependency graph 𝑑(𝑠) according to Eq. (3). For example, as shown
in Fig. 1(a), the segment nodes of the flow 𝑓1 are nodes 1 and 2. Then
according to the segment nodes, we divide the new path of flow 𝑓1
into two segments: 1 → 4 → 2 and 2 → 5 → 3. Finally, we obtain the
blackhole-free dependency graphs of these two segments as 1 ⇀ {4}
and 2 ⇀ {5}. That is, the update of node 4 (or node 5) is earlier than
the update of node 1 (or node 2).

3.2. Loop-free update

To ensure loop-free updates, we propose a loop avoidance method,
which consists of three steps. First, we find the loops 𝐻𝑓 formed by
the old and new paths according to the method of strong connected
components [1]. Then, we identify the critical nodes that determine
whether the loop ℎ ∈ 𝐻 is formed or not. Among them, ℎ𝑥 is the
4

𝑓 𝑓 𝑓
segment node in ℎ𝑓 and its next hop in the new path is not in ℎ𝑓 , ℎ𝑙𝑓
is the segment node in ℎ𝑓 and its next hop in the old path is not in ℎ𝑓 .
Finally, we construct a loop-free dependency graph based on critical
nodes, aiming to make node ℎ𝑥𝑓 update earlier than node ℎ𝑙𝑓 to avoid
loops. The dependency graph is constructed as follows

𝑑(ℎ) = ℎ𝑙𝑓 ⇀ ℎ𝑥𝑓 . (4)

Algorithm 2 Loop Avoidance
Input: flow 𝑓 , old path 𝑃 𝑜

𝑓 , new path 𝑃 𝑛
𝑓 , segment nodes 𝐺𝑓

utput: loop-free dependency graph 𝐿
1: Calculate Loops 𝐻𝑓 by strongly connected components;
2: for each ℎ𝑓 ∈ 𝐻𝑓 do
3: Find critical nodes ℎ𝑙𝑓 and ℎ𝑥𝑓 in the loop ℎ𝑓 ;
4: Get the loop-free dependency graph 𝑑(ℎ) according to Eq. (4);
5: 𝐿 = 𝐿 ∪ 𝑑(ℎ);
6: end for

The details of constructing the loop-free dependency graph are
shown in Algorithm 2. First, the loops 𝐻𝑓 formed by the new and old
paths are obtained by strong connected components [25]. Then we find
the critical nodes ℎ𝑙𝑓 and ℎ𝑥𝑙 in the loop ℎ𝑓 , and finally construct a
oop-free dependency graph 𝑑(ℎ) according to Eq. (4). For example, in
ig. 1(b), the old and new paths of flow 𝑓2 form a loop 4 → 3 → 4, the
ritical nodes ℎ𝑥𝑓 and ℎ𝑙𝑓 in this loop are nodes 3 and 4, and then the
oop-free dependency graph is 4 ⇀ 3. This means that node 4 can be
pdated only after node 3 is updated.

.3. Policy consistency update

To ensure the consistent update of policies, we need to meet the
ollowing two conditions, (i) all waypoints will be passed by the packets
i.e., the waypoint inclusion constraint), and (ii) the order of traversing
he waypoints by the packets during the update is unchanged (i.e., the
aypoint order constraint). However, path changes may cause the
bove two constraints to be violated, that is, waypoints are bypassed,
r the order of traversing waypoints is changed. We first discuss the
ituation where waypoints are bypassed, as shown in Fig. 2. Case 1: In
he old path, the packets traverse node 𝑛 before waypoint 𝑤, and in
he new path, the packets traverse node 𝑛 after the waypoint 𝑤. It can
e found that if node 𝑛 is updated earliest, the packets will bypass the
aypoint 𝑤. For example, as shown in Fig. 2(a), the old and new paths
f flow 𝑓1 are 1 → 2 → 3 → 4 and 1 → 3 → 2 → 4, where waypoint 𝑤
3, node 𝑛 = 2. For waypoint 3, in the old path, the packets traverse

ode 2 before node 3, but in the new path, the packets traverse node
after node 3. If node 2 is updated earliest, the packets will reach the

estination node 4 directly via nodes 1 and 2, which will cause the
ackets to bypass waypoint 3.

Case 2: Contrary to Case 1, in the old path, the packets visit
aypoint 𝑤 before node 𝑛, and in the new path, the packets visit the
aypoint 𝑤 after node 𝑛. We can find that if node 𝑛 is updated last, the
ackets will bypass the waypoint 𝑤. For instance, in Fig. 2(b) [12,17],
he old and new paths of flow 𝑓2 are 1 → 2 → 3 → 4 and 1 → 3 → 2 → 4,
here waypoint 𝑤 = 2, node 𝑛 = 3. For waypoint 2, in the old path, the
ackets visit the waypoint 2 before node 3, and in the new path, the
ackets visit the waypoint 2 after node 3. If node 3 is updated last, the
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Fig. 3. Conflict between dependency graphs. The orange arrow indicates the update relationship between nodes. (For interpretation of the references to color in this figure legend,
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packets will directly pass through nodes 1 and 3 to reach destination
node 4, which will cause the waypoint 2 to be bypassed by the packets.

Case 3: In both the old and new paths, the packets traverse waypoint
𝑤 before (or after) node 𝑛. In this case, the update of node 𝑛 will not
cause waypoint 𝑤 to be bypassed. As shown in Fig. 2(c), the old and
new paths of flow 𝑓3 are 1 → 2 → 3 → 4 → 5 → 6 and 1 → 3 → 4 → 6,

here waypoint 𝑤 = 3, node 𝑛 = 1 or 4. For waypoint 3, in both the
ld and new paths, the packets visit the waypoint 3 after node 1 and
efore node 4. We can find that whether node 1 or node 4 is updated
irst, the waypoint 3 will not be bypassed.

Based on the above analysis, we can find that a waypoint may be
ypassed when the order of the waypoint relative to other nodes changes in
he old and new paths. Next, we solve this problem.

For Case 1, to avoid packets bypassing the waypoints, for each
aypoint 𝑤 ∈ 𝑊 , we first find the critical node 𝑐𝑤𝑓 that determines
hether the packets bypass the waypoint 𝑤. That is, in the old path,

he packets traverse 𝑐𝑤𝑓 before 𝑤, and vice versa for the new path.
hen, we construct a waypoint-enforcement dependency graph to avoid
aypoints being bypassed. In this dependency graph, the update of the

ritical node 𝑐𝑤𝑓 is later than the update of the node 𝑔𝑤𝑓,𝑜, and 𝑔𝑤𝑓,𝑜 is the
ast segment node in the old path that controls the packets to enter the
ode 𝑐𝑤𝑓 . Thus, the dependency graph is constructed as follows

(𝑤) = 𝑐𝑤𝑓 ⇀ 𝑔𝑤𝑓,𝑜. (5)

For Case 2, similar to case 1, for each waypoint 𝑤 ∈ 𝑊 , we first find
the critical node 𝑐𝑤𝑓 that determines whether the packet bypasses the
waypoint 𝑤. That is, in the old path, the packets visit 𝑤 before 𝑐𝑤𝑓 , and
ice versa for the new path. Then we construct a waypoint-enforcement
ependency graph to avoid packets bypassing the waypoint. In this
ependency graph, the update of the critical node 𝑐𝑤𝑓 is earlier than the
pdate of the node 𝑔𝑤𝑓,𝑛, and 𝑔𝑤𝑓,𝑛 is the latest segment node in the new
ath that controls the packets entering the node 𝑐𝑤𝑓 . The dependency
raph is constructed as follows

(𝑤) = 𝑔𝑤𝑓,𝑛 ⇀ 𝑐𝑤𝑓 . (6)

By constructing the above dependency graph, we meet the waypoint
nclusion constraint, that is, the packets do not bypass the waypoints.
ext, we need to satisfy the waypoint order constraint, that is, the order
f waypoints being traversed by the packets will not be changed. Inter-
stingly, the waypoint order constraint can be satisfied after satisfying
oth the waypoint inclusion constraint and the loop-free constraint
i.e., the forwarding path has no loops), which has been proved in
heorem 8 in [12]. Therefore, the dependency graph we constructed
an satisfy both the waypoint inclusion constraint and the waypoint
rder constraint, because the loop-free constraint has been satisfied in
ection 3.2.

The details of constructing the waypoint-enforcement dependency
raph are shown in Algorithm 3. For each waypoint 𝑤 ∈ 𝑊 , we
irst find the critical node 𝑐𝑤𝑓 that determines whether the waypoint is
ypassed. That is, if the packets visit 𝑤 after node 𝑖 in the old path, and
he packets visit 𝑤 before 𝑖 in the new path, the node 𝑖 is regarded as
critical node 𝑐𝑤𝑓 (lines 3–4). Then we find node 𝑔𝑤𝑓,𝑜, which is the last

egment node in the old path that controls the packets to enter 𝑐𝑤𝑓 , and
et the waypoint-enforcement dependency graph according to Eq. (5)
5

lines 5–6). If the packets visit 𝑤 before node 𝑖 in the old path, and the 𝐷
Algorithm 3 Waypoint Enforcement
Input: flow 𝑓 , old path 𝑃 𝑜

𝑓 , new path 𝑃 𝑛
𝑓 , segment nodes 𝐺𝑓 , waypoint

set 𝑊
utput: waypoint-enforcement dependency graph 𝑊𝑃

1: for each 𝑤 ∈ 𝑊 do
2: for each 𝑖 ∈ 𝑃 𝑛

𝑓 do
3: if (𝑖𝑛𝑑𝑒𝑥𝑜𝑙𝑑 (𝑖) < 𝑖𝑛𝑑𝑒𝑥𝑜𝑙𝑑 (𝑤)) ∧ (𝑖𝑛𝑑𝑒𝑥𝑛𝑒𝑤(𝑖) > 𝑖𝑛𝑑𝑒𝑥𝑛𝑒𝑤(𝑤)) then
4: 𝑐𝑤𝑓 = 𝑖;
5: Find node 𝑔𝑤𝑓,𝑜;
6: Get the waypoint-enforcement dependency graph 𝑑(𝑤)

according to Eq. (5);
7: end if
8: if (𝑖𝑛𝑑𝑒𝑥𝑜𝑙𝑑 (𝑖) > 𝑖𝑛𝑑𝑒𝑥𝑜𝑙𝑑 (𝑤)) ∧ (𝑖𝑛𝑑𝑒𝑥𝑛𝑒𝑤(𝑖) < 𝑖𝑛𝑑𝑒𝑥𝑛𝑒𝑤(𝑤)) then
9: 𝑐𝑤𝑓 = 𝑖;

10: Find node 𝑔𝑤𝑓,𝑛;
11: Get the waypoint-enforcement dependency graph 𝑑(𝑤)

according to Eq. (6);
12: end if
13: end for
14: 𝑊𝑃 = 𝑊𝑃 ∪ 𝑑(𝑤);
15: end for

packets visit 𝑤 after 𝑖 in the new path, node 𝑖 is a critical node 𝑐𝑤𝑓 (lines
8–9). Then we find node 𝑔𝑤𝑓,𝑛, which is the last segment node in the
new path that controls the packets to enter 𝑐𝑤𝑓 , and get the waypoint-
nforcement dependency graph according to Eq. (6) (lines 10–11). As
n example in Fig. 2(a), for the waypoint 𝑤 = 3, the nodes 𝑐𝑤𝑓 and 𝑔𝑤𝑓,𝑜
re nodes 2 and 1, and then the dependency graph 𝑑(𝑤) is 2 ⇀ 1. That
s, only after node 1 is updated, node 2 can be updated. As shown in
ig. 2(b), for the waypoint 𝑤 = 2, the nodes 𝑐𝑤𝑓 and 𝑔𝑤𝑓,𝑛 are nodes 3
nd 1, and the dependency graph 𝑑(𝑤) is 1 ⇀ 3. That is, node 1 can be
pdated only after node 3 is updated.

.4. Conflict avoidance between dependency graphs

We construct dependency graphs according to Sections 3.1, 3.2,
nd 3.3 above to avoid blackholes, loops, and policy violations, but
hese dependencies may conflict. As shown in Fig. 3(a), the flow 𝑓4
s migrated from 1 → 2 → 3 → 4 → 5 → 6 to 1 → 4 → 3 → 2 →
→ 7 → 6, where node 3 is the waypoint. According to Eqs. (1)–(6),

he blackhole-free, loop-free and waypoint-enforcement dependency
raphs we constructed are 𝑑(𝑠) = {5 ⇀ 7}, 𝑑(ℎ) = {4 ⇀ 3, 3 ⇀ 2, 4 ⇀
} and 𝑑(𝑤) = {2 ⇀ 1, 1 ⇀ 4} respectively. Thus the rule update
ependency graph 𝐷𝑓4 = 𝑑(𝑠) + 𝑑(ℎ) + 𝑑(𝑤) of flow 𝑓4 is depicted in
ig. 3(b). We find that there are two circles 4 ⇀ 3 ⇀ 2 ⇀ 1 ⇀ 4 and
⇀ 2 ⇀ 1 ⇀ 4 in the dependency graph 𝐷𝑓4 because conflicts between
(ℎ) and 𝑑(𝑤). This situation will result in unable to find the correct
pdate order to avoid blackholes, loops, and policy violations.

To eliminate the conflicts between the dependency graphs, we first
se the method of strong connected components to find the conflicts
etween the dependency graphs, that is, the circles 𝑅𝑓 in the depen-
ency graph 𝐷𝑓 = 𝑑(𝑠) + 𝑑(ℎ) + 𝑑(𝑤). Then, we eliminate the circles by
emoving the dependencies in the circles from the dependency graph

. However, removing these dependencies may result in failure to
𝑓
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ensure that there will be no blackholes, no loops, and policy consistency
during the update. To deal with this problem, we adopt the method of
ag matching to ensure consistency. The processing of tag matching is
s follows. We first add matching rules on the matching nodes4 {𝑚𝑓 }
o identify the tagged packets, and then update the rule (i.e., modify
he existing old rule to implement the new one) on the tag node 𝑡𝑓 to
ark and forward packets. When dealing with our problem, the 𝑡𝑓 is

he first node that appears in the new path in a circle 𝑟 ∈ 𝑅𝑓 , and {𝑚𝑓 }
s other nodes in 𝑟 except 𝑡𝑓 . Note that a forwarding rule, such as an
penFlow flow entry [29], can support first adding tags to packets and

hen forwarding them. For intuition, we construct a conflict avoidance
ependency graph 𝑑(𝑟) to represent the process of tag matching, as
hown below:

(𝑟) = 𝑡𝑓 ⇀ {𝑚𝑓 ∣ 𝑚𝑓 ∈ 𝑟 ⧵ 𝑡𝑓 }. (7)

Algorithm 4 Conflict Avoidance
Input: flow 𝑓 , dependency graph 𝐷𝑓
Output: new dependency graph 𝐷𝑓 , 𝐼𝑓
1: while True do
2: Calculate circles 𝑅𝑓 in 𝐷𝑓 by strong connected components;
3: if 𝑅𝑓 = ∅ then
4: break;
5: end if
6: Select the circle 𝑟 ∈ 𝑅𝑓 with the largest number of nodes;
7: 𝐼𝑓 = 𝐼𝑓 ∪ 𝑟;
8: Delete the dependencies in the circle 𝑟 from 𝐷𝑓 ;
9: Get the conflict avoidance dependency graph 𝑑(𝑟) according to

Eq. (7);
10: 𝐷𝑓 = 𝐷𝑓 ∪ 𝑑(𝑟);
11: end while

The details of constructing the conflict avoidance dependency graph
re shown in Algorithm 4. The main processes of the algorithm are
s follows. We get the circles 𝑅𝑓 in the dependency graph 𝐷𝑓 by
trong connected components. If there are circles in 𝐷𝑓 that means
here are conflicts in 𝐷𝑓 . To deal with conflicts, we select a circle
∈ 𝑅𝑓 with the largest number of nodes. For the circle 𝑟, we first delete

he dependencies in the circle 𝑟 from the dependency graph 𝐷𝑓 , and
hen get the conflict avoidance dependency graph 𝑑(𝑟) according to the
q. (7) (lines 8–9). Repeat the above steps until there are no circles in
he new dependency graph 𝐷𝑓 .

Next, we give an example to facilitate the understanding of the
bove algorithm, as shown in Fig. 3(b). There are two circles in the
ependency graph, such as 4 ⇀ 3 ⇀ 2 ⇀ 1 ⇀ 4 and 4 ⇀ 2 ⇀ 1 ⇀ 4.
or circle 4 ⇀ 3 ⇀ 2 ⇀ 1 ⇀ 4, we first delete the dependencies in the
ircle from the dependency graph, and then get the tag node as node
and the matching nodes as nodes 2, 3 and 4. The conflict avoidance

ependency graph is 1 ⇀ {2, 3, 4}, that is, we first add the matching
ules on nodes 2, 3 and 4 to identify the label of node 1 (i.e., use the
ew path), and then update node 1 to tag the packets and forward them
o node 4. The new dependency graph is {1 ⇀ 2, 1 ⇀ 3, 1 ⇀ 4, 5 ⇀ 7},
s shown in Fig. 3(c). We can find that there are no circles in the new
ependency graph, so the conflict is resolved.

.5. Congestion-free update

To avoid transient congestion, before flow 𝑓 ∗ is migrated to link
𝑢, 𝑣), it needs to be satisfied that even after flow 𝑓 ∗ is moved into link
𝑢, 𝑣), the total load on the link will not exceed the link capacity 𝑐(𝑢, 𝑣).

4 The matching node refers to the switches on the routing path that are
onfigured with matching rules.
6

This means that if the rules of flow 𝑓 ∗ are updated, the link (𝑢, 𝑣) will
not be congested. This can be described as

∑

𝑓∈𝛤 (𝑢,𝑣)+𝛹 (𝑢,𝑣)+𝛷(𝑢,𝑣)
𝑦(𝑢,𝑣)𝑓 + 𝑦(𝑢,𝑣)𝑓∗ ≤ 𝑐(𝑢, 𝑣), (8)

here 𝑦(𝑢,𝑣)𝑓 represents the size of flow 𝑓 on the link (𝑢, 𝑣), 𝛤 (𝑢, 𝑣)
epresents the set of flows that need to be removed from the link (𝑢, 𝑣),
ut have not yet been removed from the link (𝑢, 𝑣), 𝛹 (𝑢, 𝑣) represents
he set of unchanged flows on link (𝑢, 𝑣), and 𝛷(𝑢, 𝑣) represents the set
f new flows that have been moved into the link (𝑢, 𝑣).

After each flow passes through a waypoint (such as the BCH encoder
r WAN optimizer), its traffic size may change. We use 𝑦𝑢−𝑓 and 𝑦𝑢+𝑓
espectively to represent the size of the flow 𝑓 before and after being
rocessed by node 𝑢. That is, 𝑦𝑢+𝑓 = 𝛼𝑢 ⋅ 𝑦𝑢−𝑓 , where 𝛼𝑢 represents the
raffic change factor after being processed by node 𝑢, and it can be
redicted [21,22]. If node 𝑢 is not a waypoint, 𝛼𝑢 = 1. The size of the
low 𝑓 over the link (𝑢, 𝑣) can be represented as 𝑦(𝑢,𝑣)𝑓 = 𝑦𝑢+𝑓 . Then the
q. (8) can be transformed into the following Eq. (9),

∑

∈𝛤 (𝑢,𝑣)+𝛹 (𝑢,𝑣)+𝛷(𝑢,𝑣)
𝑦𝑢

+

𝑓 + 𝑦𝑢
+

𝑓∗ ≤ 𝑐(𝑢, 𝑣) (9)

.6. Problem analysis

heorem 1. The proposed consistent update (CSUD) problem is NP-hard.

roof of Theorem 1. We consider a simplified version of the CSUD
roblem, that is, we only need to find a congestion-free update se-
uence. Given a network, its link capacity is 𝑐. There is a flow set
= {𝑓1, 𝑓2, 𝑓3,… , 𝑓𝑚}, where the old paths of flow 𝑓1 and rest flows

𝑓2, 𝑓3,… , 𝑓𝑚} are 𝐴 → 𝐵 → 𝐸 and 𝐴 → 𝐷 → 𝐹 . The new paths of
low 𝑓1 and flows {𝑓2, 𝑓3,… , 𝑓𝑚} are 𝐴 → 𝐷 → 𝐸 and 𝐴 → 𝐵 → 𝐹 ,
espectively. We use 𝑦𝑢+𝑓𝑖 ∈ 𝑁 to represent the size of flow 𝑓𝑖 on the
ink (𝑢, 𝑣), that is, for flow 𝑓1 and flow set 𝐻 = {𝑓2, 𝑓3,… , 𝑓𝑚}, there
re 𝑦𝐴+𝑓1 = 𝑐∕2 and ∑𝑖=𝑚

𝑖=2 𝑦𝐴+𝑓𝑖 = 𝑐. In order to allow flow 𝑓1 to migrate
rom 𝐴 → 𝐵 → 𝐸 to 𝐴 → 𝐷 → 𝐸 and meet the link capacity constraint,
e need to select a flow subset 𝐻 ′ from the flow set 𝐻 . Let flows in

he flow subset 𝐻 ′ migrate from 𝐴 → 𝐷 → 𝐹 to 𝐴 → 𝐵 → 𝐹 , and
he total flow size in 𝐻 ′ is 𝑐∕2, that is, ∑𝑓∈𝐻 ′ 𝑦𝐴+𝑓 = 𝑐∕2. In order to
ind the flow subset 𝐻 ′, we need to divide the flow set 𝐻 into two sets
hose total flow size is both 𝑐∕2. This is equivalent to the partition
roblem [30], which requires that the set 𝑆 of 𝑛 integers be divided
nto two subsets 𝑆1 and 𝑆2 with the same sum. So the CSUD problem
s an NP-hard problem.

. Rule update algorithm

In this section, we design a rule consistency update algorithm to
et the rule update sequence that can simultaneously avoid blackholes,
oops, congestion, and policy violations.

.1. Rule consistency update

In order to ensure consistent updates, we design a Rule Consistency
pdate (RCU) algorithm to get the rule update sequence, as shown

n Algorithm 5. The RCU algorithm mainly consists of five steps. In
he first step, we invoke Algorithm 1 to obtain the segment nodes
𝑓 , segment set 𝑆𝑓 and blackhole-free dependency graph 𝐵𝐻 . In the

econd step, we invoke Algorithm 2 to construct loop-free dependency
raphs 𝐿. In the third step, we invoke Algorithm 3 to construct the
aypoint-enforcement dependency graphs 𝑊𝑃 . In the fourth step, we

esolve the conflicts in the dependency graph by invoking Algorithm
, and obtain a new conflict-free dependency graph 𝐷𝑓 and a new
egment set 𝑆𝑓 (lines 11–13). In the fifth step, Algorithm 6 is invoked
o obtain an update sequence that can simultaneously avoid blackholes,
oops, policy violations, and congestion.
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Algorithm 5 RCU: Rule Consistency Update
Input: Flow set 𝐹 , old path 𝑃 𝑜

𝑓 , new path 𝑃 𝑛
𝑓 , waypoint set 𝑊

utput: Update sequence 𝑈𝑆
1: Let 𝐵𝐻 = 𝐿 = 𝑊𝑃 = 𝐷 = 𝑈𝑆 = ∅;
2: for each 𝑓 ∈ 𝐹 do
3: Step 1: Construct blackhole-free dependency graph
4: Run Algorithm 1 and obtain 𝐵𝐻,𝑆𝑓 , 𝐺𝑓 ;
5: Step 2: Construct loop-free dependency graph
6: Run Algorithm 2 and obtain 𝐿;
7: Step 3: Construct the waypoint-enforcement dependency

graph
8: Run Algorithm 3 and obtain 𝑊𝑃 ;
9: 𝐷𝑓 = {𝐵𝐻 + 𝐿 +𝑊𝑃 };

10: Step 4: Construct a new conflict-free dependency graph and
obtain a new segment set

11: Run Algorithm 4 and obtain conflict-free dependency graph 𝐷𝑓 ;

2: Delete the segments in the 𝐼𝑓 from 𝑆𝑓 ;
3: Re-divide the new path according to 𝐼𝑓 to get a new segment set

𝑆𝑓 ;
4: 𝐷 = 𝐷 ∪𝐷𝑓 , 𝑆 = 𝑆 ∪ 𝑆𝑓 ;
5: end for
6: Step 5: Get the update sequence to ensure consistent update
7: Run Algorithm 6 and obtain 𝑈𝑆;

4.2. Getting update sequence

Algorithm 6 Get Update Sequence
Input: Flow set 𝐹 , old path 𝑃 𝑜

𝑓 , new path 𝑃 𝑛
𝑓 , segment set 𝑆,

dependency graph 𝐷
utput: Update sequence 𝑈𝑆

1: Put the nodes without dependencies into 𝑢𝑠0;
2: Delete 𝑢𝑠0 from 𝐷, 𝑈𝑆 = 𝑈𝑆 + 𝑢𝑠0;
3: Sort flow size in ascending order;
4: while 𝑆 ∉ ∅ do
5: 𝑗 = 𝑗 + 1, 𝑢𝑠𝑗 = ∅;
6: for each 𝑓 ∈ 𝐹 do
7: for each 𝑠 ∈ 𝑆𝑓 do
8: if for each link 𝑒 ∈ 𝑠, the Eq. (9) can be satisfied then
9: if 𝑠[0] has no precursor node in 𝐷𝑓 then
0: 𝑢𝑠𝑗 = 𝑢𝑠𝑗 + 𝑠[0];
1: Delete 𝑠 from 𝑆𝑓 and 𝑆;
2: end if
3: end if
4: end for
5: end for
6: 𝑈𝑆 = 𝑈𝑆 + 𝑢𝑠𝑗 ;
7: if 𝑢𝑠𝑗 = ∅ then
8: for each 𝑠 ∈ 𝑆𝑓 do
9: if link 𝑒 ∈ 𝑠 does not satisfy the Eq. (9) then
0: 𝑦𝑓 = min

𝑒′∈𝑃 𝑛
𝑓

𝛾(𝑒′), 𝑗 = 𝑗 − 1;

21: end if
22: end for
23: end if
24: end while

Algorithm 6 is designed to transform the obtained rule update de-
endency graph into a rule update sequence while avoiding congestion.
he main processes of the algorithm are as follows. We first update
he nodes that have no dependencies (including matching nodes), and
elete 𝑢𝑠0 from the dependency graph 𝐷 (lines 1–2). For nodes with
ependencies, in order to ensure consistent updates, we need to take
7

s

he following measures (lines 3–24). For each link 𝑒 ∈ 𝑠 in the segment
𝑠 ∈ 𝑆𝑓 of each flow 𝑓 ∈ 𝐹 , if the link load satisfies the Eq. (9) after
the flow 𝑓 moves into the link, and the segment node 𝑠[0] has no
dependency with other nodes, it means that the segment node can be
updated, or mark the packets if the segment node is a tag node. We put
𝑠[0] into the update sequence 𝑢𝑠𝑖 and delete 𝑠 from 𝑠𝑓 (lines 6–15). If
here are deadlocks [10] or there are conflicts between congestion-free
nd the three consistency attributes (i.e., blackhole-free, loop-free, and
olicy consistency), we use the rate limiting method [8,10]. That is, the
ate of flow 𝑓 is limited to the minimum available link bandwidth 𝛾(𝑒′)
lines 17–23). The above processes are repeated until all nodes are put
nto the update sequence.

.3. Algorithm complexity analysis

In the network, there are 𝑛 nodes, 𝑚 flows, and 𝑤 waypoints. We
nalyze the complexity of RCU algorithm as follows. As shown in
lgorithm 5, the RCU algorithm consists of five stages. In the first stage,
lgorithm 1 is invoked to divide the new path and construct blackhole-

ree dependency graphs. Since each path contains at most 𝑛 nodes, it
osts 𝑂(𝑛) to get the segment nodes, and 𝑂(𝑛2) to construct blackhole-
ree dependency graphs. Thus, the total cost of the first stage is 𝑂(𝑛2).
n the second stage, Algorithm 2 is invoked, and it costs 𝑂(𝑛2) to find
he loops formed by the new and old paths, and 𝑂(𝑛2) to construct
oop-free dependency graphs. Therefore, the total cost of the second
tage is 𝑂(𝑛2). In the third stage, Algorithm 3 is invoked, and it costs
(𝑤𝑛2) to construct waypoint-enforcement dependency graphs. In the

ourth stage, Algorithm 4 is invoked, and it costs 𝑂(𝑤𝑛2) to get the
ircles in the dependency graph. Since at least one circle is resolved in
ach round of the fourth stage, it needs to perform at most 𝑛 rounds.

In general, the number of circles is small, and it can be considered as
a constant. Thus, the fourth stage costs 𝑂(𝑤𝑛2) to construct conflict-
ree dependency graphs. In Algorithm 5, the above four algorithms
re invoked, and they cost 𝑂(𝑚𝑤𝑛2) to construct blackhole-free, loop-
ree, waypoint-enforcement, and conflict-free dependency graphs for 𝑚

flows.
In the fifth stage, Algorithm 6 is invoked. It first costs 𝑂(𝑚𝑤𝑛) to

update nodes that have no dependencies, and then costs 𝑂(𝑚2) to sort
the flows. Next, for nodes with dependencies, it takes 𝑂(𝑛𝑚2 + 𝑤𝑚𝑛2)
to find nodes that can be updated. If there are deadlocks or conflicts
between congestion-free and the above three consistency attributes, it
takes 𝑂(𝑚𝑛 + 𝑛2) to calculate and update the transmission bandwidth
after the rate limit. Since at least one segment is updated or one conflict
or deadlock is resolved in each round of the fifth stage, it needs to
perform at most 𝐾 = 𝑚𝑛 rounds. The total cost of the fifth stage is
𝑂(𝐾𝑛𝑚2 + 𝐾𝑤𝑚𝑛2). To speed up the algorithm, we can set a constant
hreshold for the number of iterations 𝐾 [10]. Thus, the total cost of the
ifth stage is 𝑂(𝑛𝑚2+𝑤𝑚𝑛2). Based on the above analysis, the complexity
f RCU algorithm is 𝑂(𝑛𝑚2 +𝑤𝑚𝑛2).

. Performance evaluation

In this section, we first introduce the simulation settings and then
iscuss the simulation results in detail.

.1. Simulation settings

Operating environment: We evaluate our algorithm in experimen-
al and simulation settings. The experimental environment is based on
ur Ryu [31]/Mininet [32] running RYU NOS, OpenFlow v1.3 and
pen-VSwitch v2.3. Besides, numerical simulations are implemented
n a Python-based simulator. They are executed on a machine with 8G
AM, 3.2 GHz CPU and i7-8700 processor.
Topology: Our experiment is implemented in three topologies of

at-tree, VL2 and Mesh. The 8-pod Fat-tree topology [9] has 16 core
witches, 32 aggregation switches, 32 edge switches and 128 hosts
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Fig. 4. Performance comparison between RCU algorithm and optimal solution.
espectively. The VL2 topology [33] has 5 intermediate switches, 20
ggregation switches, 50 ToR switches and 100 hosts. The Mesh topol-
gy [1,10] has 80 switches, and the degree of each node in the network
s 4.
Parameters: The capacity of each link is set to 1 Gbps [1,10]. The

umber of waypoints varies from 1 to 3 [17], and the traffic factor of
ach waypoint is randomly selected from 0.8 to 1.2 [34].
Workloads: We use a public data set to generate traffic load [35,

6]. The data set is collected from a network of 23 nodes, collected
very 15 min for several months. And the data set contains the source
ode, destination node, and bandwidth of each flow. The number of
lows varies from 100 to 300 to simulate various network loads. How-
ver, the three topologies we selected have more hosts than the data
et. Therefore, we randomly generate the source and the destination
odes of a flow, and then select the bandwidth in the data set as the
low size. Similar to [4,5], we generate old and new paths based on the
ijkstra algorithm [28] for sequentially traversing waypoints.
Metrics: We first evaluate our algorithm with numerical simulations

y comparing it with existing algorithms in terms of success rate,
aximum link utilization, computation time and update rounds. This

s because the above metrics are macroscopic behaviors and do not
nvolve micro operations, such as message processing and flow rule
pdates. Further, we evaluate the total execution time of our algorithm
n experimental environments based on Mininet and Ryu controller, as
t involves microscopic behaviors.
Methods: We will compare our RCU algorithm with six closely

elated algorithms, including DRF [12], DSF [12], FLIP [19], CSU [15],
RCU and optimal solution. Among them, DRF and DSF algorithms are
esigned to avoid blackholes, loops, and policy violations. The DSF al-
orithm ensures that there are no loops at any time. The DRF algorithm
eakens the loop-free condition, and only ensures that there are no

oops in the current path from the source node. The FLIP algorithm
s designed to avoid blackholes, loops, policy violations, and conflicts
etween loop-free and policy consistency. This method allows packets
o traverse a finite number of loops while resolving conflicts. The
SU algorithm is designed to avoid blackholes, loops, and congestion.
he NRCU algorithm is a special case of the RCU algorithm, and it
oes not consider traffic changes. The optimal solution is obtained by
xploring the solution space using the branch and bound method [37].
e compare the above algorithms with RCU algorithm to emphasize

he importance of jointly considering blackholes, loops, congestion, and
olicy violations. The detailed differences and correlations between our
lgorithm and these algorithms are discussed in Section 2, as shown in
able 1.

.2. Comparison between RCU algorithm and optimal solution

In this subsection, we compare our RCU algorithm with the optimal
olution in terms of update rounds and algorithm computation time, in
8

Table 3
Additional TCAM overhead (RCU vs FLIP).

Topology
Number of waypoints

𝑤 = 1 𝑤 = 2 𝑤 = 3

Fat-tree 0.9% 2.4% 4.1%
VL2 0.8% 2.7% 3.3%
Mesh 2.1% 3.5% 5.4%

Fat-tree topology. The experimental results are the average values of
10 tests, as shown in Fig. 4.

As shown in Fig. 4(a), our algorithm can always hit the opti-
mal solution under different numbers of flows. This result verifies
that our algorithm has good performance. As shown in Fig. 4(b), the
computation time of our algorithm is significantly shorter than that
of obtaining the optimal solution, and the computation time of the
optimal solution grows exponentially. This is because the solution space
grows exponentially as the number of flows increases. Searching for an
optimal solution in such a large solution space is very time-consuming.
For example, when updating the paths of 5 flows, the computation
time of our algorithm is 0.01s, while the computation time of the
optimal solution is 24326.54 s. This is because the optimal solution
is obtained by brutally exploring the whole solution space with an
exponential scale update sequences. It should be noted that when the
number of flows is large, our algorithm may not be able to hit the
optimal solution, however obtaining the optimal solution in this case
is very time-consuming.

5.3. Comparison of RCU algorithm with FLIP, DRF, DSF and CSU algo-
rithms

In this subsection, we evaluate the success rate, TCAM overhead,
maximum link utilization, computation time, and update rounds of
RCU, FLIP, DRF, DSF and CSU algorithms. The experimental results are
the average values of 50 tests.

(1) Success rate: Fig. 5 shows the success rate of the different
algorithms when the number of flows is 100. Success rate refers to
the ratio that the obtained update sequence can ensure loop-free and
policy consistency. As shown in Fig. 5(a), our algorithm always out-
performs the others and is close to 1. While the success rate of other
algorithms decreases as the number of waypoints increases. As shown
in Fig. 5(c), the success rate of CSU, DRF, DSF and FLIP algorithms
respectively is 48.2%, 62.8%, 63.4% and 79.4% when the number of
waypoints is 3 (i.e., 𝑤 = 3). This is because our algorithm can effec-
tively guarantee loop-free and policy consistency, and it also avoids
conflicts between them by constructing the conflict avoidance depen-
dency graph. However, the CSU algorithm ignores policy consistency,
and other algorithms do not resolve (DRF and DSF) or fully resolve
(FLIP) the conflicts between loop-free and policy consistency. As the

number of waypoints increases, the probability of conflicts between
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Fig. 5. Success rate in different topologies.
Fig. 6. Maximum link utilization in different topologies.
Fig. 7. Calculate update sequence time in Fat-tree topology.
3

loop-free and policy consistency may also increase, so the success
probability of CSU, DRF, DSF and FLIP algorithms may decrease.

In addition, we observe that the success rate of CSU, DRF, DSF
and FLIP algorithms in Mesh is lower than that in Fat-tree and VL2,
because there are fewer alternate links in Mesh than in Fat-tree and
VL2 topologies. Hence, the probability of conflicts between loop-free
and policy consistency increases, and the success rate of CSU, DRF, DSF
and FLIP algorithms decreases. Finally, we show the extra TCAM used
by our algorithm compared to FLIP, as shown in Table 3. The results
show that our algorithm can effectively resolve the conflict between
policy consistency and loop-free with a little extra TCAM resources.

(2) Congestion: Fig. 6 shows the change of the maximum link
utilization with the increase of the number of flows, when the number
of waypoints is 2. Once the maximum link utilization exceeds 1, conges-
tion will occur, resulting in packet loss and throughput degradation. We
can see from Fig. 6 that the RCU algorithm always guarantees that the
maximum link utilization is less than or equal to 1, and the maximum
link utilization of the DRF, DSF, FLIP and CSU algorithms is some-
times greater than 1 (that is, congestion occurs). Specifically, in Mesh
with 300 flows, the maximum link utilization of the DRF, DSF, RCU,
9

FLIP and CSU algorithms are 1.257, 1.254, 0.997, 1.299 and 1.079,
respectively. This is because the DRF, DSF, and FLIP algorithms do not
consider avoiding transient congestion. Although transient congestion
is considered in the CSU algorithm, it ignores that the size of a flow
may change after being processed by waypoints, which may still cause
congestion. In our RCU algorithm, all these factors are considered.

(3) Computation time: Fig. 7 shows the time required for all
algorithms to calculate the update sequence in the Fat-Tree topology.
Obviously, the computation time of RCU, FLIP and CSU algorithms is
short, which is significantly outperforms DRF and DSF algorithms. As
shown in Fig. 7(c), when the number of flows is 300, the time spent
by CSU, RCU, FLIP, DRF and DSF algorithms to calculate the update
sequence is 4.16s, 4.99s, 5.43s, 51.28s and 32.75s, respectively. This is
because the DRF and DSF algorithms need to solve linear programs with
many constraints, which are time-consuming. While the RCU, FLIP and
CSU algorithms are efficient heuristics, they can get results quickly.

(4) Update rounds: Fig. 8 shows the number of rounds required
to update the different number of flows when 𝑤 = 3 in the Fat-tree
topology. In Fig. 8(b), when the number of flows is 300 (i.e., |𝐹 | =
00), the RCU algorithm requires slightly more update rounds than
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Fig. 8. Update rounds in different number of flows.
Fig. 9. Number of directly-updated flows (NDUFs) in different topologies.
Fig. 10. Maximum link utilization in different topologies.
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the DRF, DSF and FLIP algorithms, and less update rounds than CSU
algorithm. This is because RCU algorithm also needs to avoid transient
congestion compared with DRF, DSF and FLIP algorithms. In order to
avoid congestion during the update, the RCU algorithm needs to delay
the update of some flows on the potentially congested link, so the
number of update rounds increases. Furthermore, the CSU algorithm
adopts the reverse order update method to avoid blackholes and loops,
which requires more update rounds. Another observation result is that
the number of update rounds required for the DRF algorithm is the
least. The reason is that compared with other algorithms, the DRF
algorithm weakens the loop-free condition, so the number of update
rounds will be reduced.

5.4. Impact of traffic change factor on link utilization and update flow
number

In this subsection, we evaluate the impact of the traffic change fac-
tor 𝛼 on the number of directly-updated flows (that is, no dependency
on other flows) and the maximum link utilization in the RCU and NRCU
10

algorithms. d
As shown in Fig. 9, when 𝛼 < 1, compared with the RCU algorithm,
he NRCU algorithm that does not consider the flow sizes change
i.e., 𝛼 = 1) will get less directly-updated flows. This means that
nnecessary waiting time for some flows is increased. The reason is that
he flow sizes have become smaller after being processed by waypoints
hen 𝛼 < 1. The link is a potentially congested link when 𝛼 = 1, but

the link may not be a potentially congested link when 𝛼 < 1, thus the
flows on this link can be updated directly. When 𝛼 = 1, NRCU and RCU
algorithms get the same result because the flow sizes have not changed.

When 𝛼 > 1, compared with the RCU algorithm, although the NRCU
lgorithm can obtain more flows that can be directly updated, as the
umber of flows increases, the maximum link utilization of the NRCU
lgorithm is over 1. As shown in Fig. 10(b), when the number of flows
s 300, the maximum link utilization of the NRCU algorithm is 1.183,
hich will cause link congestion. This is because when 𝛼 > 1, the

low size becomes larger after being processed by waypoints. The link
s not a potentially congested link when 𝛼 = 1, but the link may be

potentially congested link when 𝛼 > 1. Because NRCU algorithm
oes not consider the change of flow sizes, it will directly update the
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Fig. 11. Total execution time in Fat-tree topology.

lows on this potentially congested link, resulting in link congestion.
owever, the RCU algorithm will delay the update of some flows on

his potentially congested link to avoid congestion, so the number of
irectly-updated flows is reduced, and the maximum link utilization is
lways less than or equal to 1.

In addition, we can observe from Fig. 9 that when the number of
lows is 100, the number of directly-updated flows obtained by the
CU and NRCU algorithms basically does not change with the traffic
hange factor. This is because when the number of flows is 100, the
etwork load is relatively light, and there are many alternative links in
etworks, so the probability of congestion is relatively small.

.5. Experimental result

To further verify the practicality of our algorithm, we evaluate our
lgorithm in an experimental environment in terms of total execution
ime, which includes rule update time and algorithm computation time.

e test the total execution time required to update 300 flows in the
at-tree topology, and the results are shown in Fig. 11. Obviously
he total execution time of our algorithm is short, it is close to CSU
lgorithm and FLIP algorithm, their updates are completed in about
s. At the same time, the total execution time of DSF algorithm and
RF algorithm is about 34 s and 50 s respectively. This is because our
lgorithm has a shorter computation time, while the DSF algorithm and
he DRF algorithm take a long time to run the mathematical optimizer
o obtain the result. Also, the rule update time of the switch (tens of
illiseconds per round) is significantly shorter than the computation

ime. The above results show that our algorithm has a short execution
ime, which helps the rules on switches to be updated quickly.

. Conclusions

In this paper, we propose a rule consistency update mechanism
hat can simultaneously avoid blackholes, loops, congestion, and policy
iolations. First, we analyze the causes of blackholes, loops, congestion
nd policy violations during the update. Then, we construct update
ependency graphs to avoid blackholes, loops, and waypoints being
ypassed. In order to improve the success rate of consistent updates,
e build a conflict avoidance model to resolve conflicts between depen-
ency graphs. In addition, to avoid transient congestion and consider
hat the waypoint may change the size of its process flow, we propose
congestion avoidance model based on the traffic change factor. Sub-

equently, we prove that the consistent update problem is an NP-hard
roblem, and propose an effective heuristic RCU algorithm to obtain
he update sequence that satisfies the above four consistency. Finally,
e test the different performance indicators of our proposed algorithm

n different situations, and find that compared with DRF, DSF, FLIP and
SU algorithms, our proposed algorithm can effectively improve the
uccess rate and reduce the maximum link utilization.
11
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