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a b s t r a c t 

As a new promising technology, Network Function Virtualization (NFV) converts hardware based network 

function into software module running on virtual machines, for cost reduction and ease of management. 

These virtualized networks functions (VNFs) are commonly organized together as service function chains. 

Properly deploying VNFs is a key to achieve NFV targets. Most of existing effort s f ocus on one-time place- 

ment, ignoring the dynamic deployment and scaling needs of VNFs for the time-varying system. In this 

paper, we study the dynamic deployment and scaling of VNFs for operation cost minimization. We first 

formulate an offline VNF deployment cost minimization problem and prove its NP-hardness. Then, consid- 

ering the dynamics of the network, we propose an efficient online scaling algorithm, which is composed 

of two parts: 1) One is Fourier-Series-based forecasting approach to minimize cost by avoiding frequent 

changes in network topology and 2) the other is online deployment algorithm to properly deploy VNF 

instances. We finally evaluate the proposed algorithms and results show that our algorithms can reduce 

more than 20% cost while maintaining the same system performance as other heuristic algorithms. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

Modern communication network attaches great importance to

ata transfer security, resource utilization and system performance.

hese concerns used to be solved by dedicated hardware mid-

leboxes, such as firewalls, network address translators (NATs)

nd deep packet inspection (DPI), which are costly and difficult

o reconfigure [1] . Network Function Virtualization (NFV) as an

merging technology revolutionizes the handling of network func-

ions, which applys virtualization technology to consolidate net-

ork functions onto industry-standard virtualized platforms, e.g.,

irtual machines (VMs) on high-volume servers, aims at achieving

onfiguration and scaling flexibility, as well as cost minimization

2,3] . 

The network containing VMs is referred to as NFV-Enabled net-

ork. Data in such network are transmitted in the form of service

hain, which consists of a sequence of network functions in a spec-

fied order [4,5] . In practice, the NFV-Enabled network is a time-

arying system and needs to be constantly redeployed by adding

r removing VMs with the change of demands [6] . How to dynam-

cally deploy virtual network functions (VNFs) is a key to achieve
∗ Corresponding author. 
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FV targets. A concern on VNF deployment problem is how to re-

uce deployment cost to increase revenue for service providers.

n the meantime, quality of service (QoS) is another concern in

NF deployment. Due to the sharing nature of data centers, there

ay exist some other workloads called background traffic in the

etwork when processing network functions, which may occupy

andwidth resources [7] . Ignoring the background traffic when de-

loying the VNFs may cause unexpected performance degradation

ue to link congestion. These concerns motivate us for this work

n the dynamic deployment and scaling of VNFs. 

However, there exist some challenges for the dynamic deploy-

ent and scaling of VNFs. First, the demands of traffics may

hange from time to time. This requires us to consider a time-

arying system where all requests are dynamically generated. Sec-

nd, the deployment of VNFs determines the routing path of each

equest, which further influences the quality of network service.

hird, an online routing algorithm is needed to process flows to

inimize the transmission cost while satisfying the delay con-

traint. To address these challenges, some effort s have been taken

lace in recent years. Duan et. al. designed a system to manage

caling of VNF service chains in control plane and data plane [8] .

hey proposed that service chain scaling is a good way to achieve

FV goals and combined reactive scaling with proactive scaling.

owever, the sharing nature of data centers was ignored. Rost and

chmid consolidated all network functions into one data center,

https://doi.org/10.1016/j.comnet.2019.107040
http://www.ScienceDirect.com
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called middlebox [9] . They figured out a cost-inefficient path but

did not consider the order of network functions. Sun et. al. intro-

duced a forecast approach to update network topology [10] , but

they did not take QoS into account. Jia et. al. found the optimal

placement and routing path by constantly changing network topol-

ogy [11] , which was costly and unrealistic under actual situation.

What’s more, some existing works [12–14] proposed a one-time

placement method but ignored the dynamic deployment and scal-

ing needs of VNFs. 

In this paper, we consider the horizontal scaling of VNFs and

assume the network is operated within service provisioning time

s , which is divided into a large span of time slots 1 , 2 , . . . , T . There

will be a prediction stage in each time slot. In each prediction

stage, we introduce a forecast mechanism based on Fourier-Series

to judge whether there are new demands generated in the next

time slot. If yes, we will update network topology to serve it. Here,

the demands are defined as new network functions that need to

be processed. Similar to [15] , we take the bandwidth usage for

other workloads as a time-varying pattern. In fact ignoring these

workloads may cause link congestion. To maintain the system per-

formance, we adopt an online learning framework to propose our

deployment algorithm and construct a multi-level acyclic graph to

ensure the order of processing. 

Compared to the existing works [12–14,16–19] our work has the

following advantages: (i) A time-varying model is constructed and

the dynamic deployment and scaling need of VNFs is considered;

(ii) Energy consumption is reduced while system performance is

taken into account, which is reflected by end-to-end delay and link

congestion. In summary, the main contributions of this paper can

be summarized as follows. 

• We construct a VNF placement model that contains the dy-

namic creation of VNFs and dynamic routing between differ-

ent VNF instances. The aim of the model is not only reducing

VNF placement cost but also improving the quality of service in

terms of end-to-end delay and link congestion. 

• We propose a forecasting method, which can avoid frequent up-

dates to network topology. This algorithm can reduce the cost

and delay of creating VNFs. 

• We propose a VNF deployment algorithm based on online

learning to eliminate the influence of background traffic. In the

meanwhile, we analyze the performance of this algorithm and

give its superiority. 

• Finally, experimental results show that the proposed algorithms

can reduce the cost by 20% while maintaining the performance

of the system than the existing works. 

The remainder of this paper is organized as follows.

Section 2 discusses the related work for NFV management

and Section 3 introduces the system model and formulates the

optimization problem. Then, Section 4 describes the forecast

algorithm to predict demand changes and an online-learning

based VNF deployment algorithm is proposed. A routing algorithm

for the request in newly network topology is given in Section 5 .

Finally, we present evaluation results in Section 6 and conclude

this paper in Section 7 . 

2. Related work 

In this section, we review some existing works in deployment

and scaling of NFV. 

2.1. Deployment of NFV 

The concern of NFV was first presented from a white paper

[2] in which telecommunication operators claimed that network
unctions could be virtualized and processed on the virtual plat-

orm. Early work focused on virtualizing network functions on spe-

ialized hardware platforms and set industry standards for the op-

ration of VMs [20–22] . 

In recent years, there are several studies on NFV deployment.

ost et al. [9] considered the placement of a middlebox in a n -

odes network, through which each flow from source to destina-

ion should go. Under the assumption that each middlebox could

erve k flows and each flow could only take one network function,

hey introduced an approximation algorithm with approximation

atio O (log min { n, k }). However, this assumption is too simple and

oes not in line with the actual situation. M. Jia et al. [13] intro-

uced an auxiliary directed acyclic graph and a heuristic algorithm

o minimize the cost of routing with and without end-to-end de-

ay constraints. They assumed VMs could be dynamically added in

ny data center. In this case, one does not need to choose the VM,

hich is far from the source-destination pair. But that is just a

ramework, and the authors do not show how to add VMs specifi-

ally. 

VNF-P [23] constructed an optimization model to combine the

ardware platform with VNFs and considered the end-to-end delay

o guarantee QoS. Similarly, Bari et al. [24] studied the optimization

roblem that minimized the operating cost. However, these stud-

es [23,24] only deal with one-time placement or resource alloca-

ion and ignore the dynamics of network. Pham et al. [25] adopted

he matching theory and Markov approximation approach to solve

NF placement problem, for the aims of cost minimization. To cope

ith the VNF many-to-one matching game, they introduced a cen-

ralized solution and a distributed solution. Cziva et al. [26] for-

ulated the Edge VNF placement problem to minimize the delay

etween users and VNFs. In their system model, the delay of net-

ork was changing from time to time and the user mobility pat-

erns and QoS were taken into account. With the help of queuing

heory, the authors in [27] sought to solve the VNF placement and

esource allocation problem. What’s more, they also proposed an

fficient solution strategy called MaxZ to reduce the solution com-

lexity. 

.2. Scaling of VNF 

There are also some studies focused on the scaling of VNFs in

ecent years. Wang et al. [28] introduced a VNF scaling algorithm

ased on a classical online ski-rental algorithm. The algorithm used

ast information as input to get the number of VMs to be needed

n the next time slot. Similarly, Sun et al. [10] proposed a forecast-

ssisted VNF scaling algorithm to update network topology on de-

and, but QoS was not taken into account. Jia et al. [11] lever-

ged a regularization method from online learning to divide the

ptimization problem into a sequence sub-problems, which could

ecouple the decisions in time slots t and t − 1 . In their system

odel, end-to-end delay was quantified as part of the cost. But

he work in [11] was based on the assumption that there was no

utual interference between each data center. This implies that it

oes not need to consider background traffic, which violates the

haring nature of data centers. 

Rahman et al. [29] introduced a scaling algorithm based on Ma-

hine Learning (ML). The proposed ML-based algorithm used past

NF scaling decisions and traffic characteristics as input to gen-

rate deployment solution in advance. Toosi et al. [30] combined

he horizontal and vertical scaling of VNFs to reduce the cost and

he service level agreement in a time-varying system. Duan et al.

8] used the case of IMSs and designed a scaling system for the

ervice chains in control plane and data plane. The authors in

31] first formulated a traffic forecasting algorithm to estimate the

pper bound of traffic in a short term. Under this forecasting, two
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Fig. 1. An example of a network G ( V, E ) with a switch nodes set V = { v 1 , v 2 , v 3 , 

v 4 , v 5 , v 6 , v 7 } and V d = { v 2 , v 6 , v 7 } . There are two service chains from source to 

destination in a specified order. 
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NF placement algorithms were proposed to meet the demand of

NF scaling. 

Compared with existing works, we consider the dynamic de-

loyment and scaling need of VNFs as well as background traf-

c. We propose a forecasting mechanism to avoid the frequent

hanges of network topology and a VNF placement algorithm to

liminate the effects of background traffic. 

. System model and problem formulation 

In this section, we first introduce the system model and then

resent the objective function in offline mode. 

.1. System model 

The network topology is represented by a directed graph G =
(V, E) , where V is the set of switch nodes and E is the set of links.

n order to assemble service chains to meet the demand of flows,

ome nodes that hold VMs to process network functions are at-

ached to data centers. We use V d to represent the set of nodes

onnected to data centers. For those nodes that are not attached to

ata centers or belong to the set V d but do not perform network

unctions, we treat them as switch nodes. Notice that compared to

he communication cost and delay between nodes in the network,

he cost and delay between nodes and data centers can be negligi-

le as they are connected by high-speed optical fiber [32] . 

The VMs on data centers may run different network functions,

hich are denoted as VNF instances. We assume that there are a

otal of M types of VNF instances and I data centers. Since the di-

ersity of CPU, memory, etc., different data centers have different

rocessing capacity for VNF instances [33] . In this paper, we denote

he available amount of resource in data center m and instance i by

 

r 
m 

, w 

r 
m,i 

( r ∈ R ) respectively, where R represents different types of

esources (CPU and memory). In each time slot, there are P traffic

ows, and each flow p ∈ P travels from source s p to destination

 p to process network functions in a specified order. We use Fig. 1

s an example to demonstrate the network, where switch nodes 2,

 and 7 are connected to the data center. The definition of other

arameters used in this paper are listed in Table 1 . 

In the following we consider the processing of service chains.

uppose that a flow is denoted by f p = ( s p , d p , b p , sc p ), where s p ,

 p indicate the source and destination, respectively, b p is the re-

uirement of bandwidth and sc p represents the service chain. For

ase of modeling, we use sc p = { sc p, 1 , sc p, 2 , . . . , sc p,m 

} to indicate

ifferent network functions. Without loss of generality, the flow
ate may change after passing through some VNF instances [34] .

or example, the network function such as video transcoding will

hange the format of data packets, resulting in a change in the flow

ate; security functions (e.g. deep packet inspection, firewall) may

rop some packets that do not comply with security policy. Thus

e use F p, v , v ′ to indicate the flow rate of p -th flow between two

djacent nodes v and v ′ , use αp,m 

to represent the change rate of

ow p passing through m -th VNF instance. Notice that we can get

p,m 

by estimating and calibrating over time. We can calculate the

ow rate of flow p after passing through the m -th VNF by 

 p, v , v ′ = F p, v , v ′ αp,m 

(1) 

s shown in Fig. 1 , we suppose the initial flow rate of service chain

 is 20. When flow p passes through V 2 , the flow rate changes

orrespondingly. From (1) we can get F 2 , 2 , 4 = 12 (since α2 , 1 = 0 . 6 ,

2 , 3 = 1 ) and F 2 , 6 , 5 = 10.8 (since α2 , 2 = 0 . 9 ). Notice that if service

hain 2 only processed VNF3 while passing through data center 1,

hen F 2 , 2 , 4 = 20. 

In each service provisioning time, we introduce logic link

 

(t) 
p,m,i,m 

′ ,i ′ . The x (t) 
p,m,i,m 

′ ,i ′ is a non-negative real number and repre-

ents the flow rate of p -th flow from VNF instance m in data center

 to VNF instance m 

′ in data center i ′ . band i,i ′ is the bandwidth ca-

acity constraint at logic link ii ′ , which is equal to the minimum

alue in physical links. 

.2. Cost function construction 

The processing of network functions in data centers will cause

ost and delay. Similarly, we assume the transmission of flow also

auses cost and delay. Given a flow p going through data centers as

ts specified order from source to destination, our goal is to min-

mize the total cost of the network. The overall cost can be di-

ided into two parts. One is the deployment cost C (t) 
D 

and the other

s the implementation cost C (t) 
I 

, which contains transmission and

rocessing cost. 

 

(t) = C (t) 
D 

+ C (t) 
I 

(2) 

.2.1. Deployment cost 

Creating a new VNF instance typically requires transferring the

mage of the VM to the data center and attach the image to the

evice. Without loss of generality, we use βm,i to represent the

ost of deploying a VNF instance m in data center i and use d m,i 

o denote the delay of deploying a VNF instance m in data center i .

ue to that the cost caused by the removal of VNF instance is rel-

tively small, we regard the creation of VNF instance as the main

ost [35] and the delay is the same. Let δ(t) 
m,i 

denote the number

f creating new VNF instances m in data center i , which can be

btained by 

(t) 
m,i 

= max { 0 , ρ(t) 
m,i 

− ρ(t−1) 
m,i 

} (3) 

here ρ(t) 
m,i 

is the number of VNF instances m contained in data

enter i in time slot t . Thus we can calculate the total cost of de-

loyment by 

 

(t) 
D 

= 

∑ 

i ∈ [ I] 

∑ 

m ∈ [ M] 

βm,i δ
(t) 
m,i 

(4) 

imilarly, the total delay of VNF deployment can also be obtained

y (5) 

 

(t) 
D 

= 

∑ 

i ∈ [ I] 

∑ 

m ∈ [ M] 

d m,i δ
(t) 
m,i 

(5) 

.2.2. Implementation cost 

In this section, we consider the cost of transmission and pro-

essing of network functions in data centers. 
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Table 1 

Notations. 

Parameters Description 

P Number of flows 

M Number of VNF types 

I Number of data centers in system 

R Types of resources of a PM 

X Set of feasible solution 

ρ(t) 
m,i 

Number of VNF m contained in data center i 

δ(t) 
m,i 

Number of new VNF m deployed in data center i 

s p , d p , b p Source, destination and bandwidth requirement of flow p 

x (t) 
p,m,i,m ′ ,i ′ Incoming flow rate of flow p from VNF m in data center i to VNF m 

′ in data center i ′ 

F p, v , v ′ Flow rate of p -th flow between node v and v ′ 
αp,m Change ratio of flow p after passing through VNF m 

r j,t Reward of arm j in time slot t 

r j,t Average reward of arm j during t 

r 
max 
t Average reward of optimal arm during t 

c T,n j (t) Confidence interval 

n j ( t ) Number of times that arm j is selected during time t 

n max (t) Number of times that optimal arm is selected during time t 

μj Reward expectation of arm j 

μmax Greatest reward expectation of all arms 

a j,t Indicator function 

w 

r 
m,i 

Capacity of VNF m in data center i for resource type r 

w 

r 
i 

Capacity of data center i for resource type r 

band i,i ′ Capacity of logic link ii ′ 
d m,i Delay of deploying a new VNF m in data center i 

ϕ p,i,i ′ Delay of transmission from data center i to data center i ′ 
λm Delay of processing VNF m 

βm,i Deployment cost of VNF m in data center i 

γp,i,i ′ Transmission cost of p -th flow from data center i to i ′ 
τ m Processing cost of VNF m 
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As we know, the transmission of data on link is often accompa-

nied by the cost of energy. Here we let γp,i,i ′ indicate the cost of

sending a unit of data from data center i to i ′ by the p -th flow on

logical link. Recalling the flow rate defined, we can get the overall

cost of transmission as 

 

(t) 
l 

= 

∑ 

p∈ [ P] 

∑ 

m ∈ [ M] 

∑ 

m 

′ ∈ [ M] 

∑ 

i ∈ [ I] 

∑ 

i ′ ∈ [ I] 
x (t) 

p,m,i,m 

′ ,i ′ γp,i,i ′ (6)

Notice that if different VNF instances are in the same data cen-

ter, then the cost of transmission is 0. Similarly, we use d (t) 
l 

to rep-

resent transmission delay, which can be computed by 

d (t) 
l 

= 

∑ 

p∈ [ P] 

∑ 

m ∈ [ M] 

∑ 

m 

′ ∈ [ M] 

∑ 

i ∈ [ I] 

∑ 

i ′ ∈ [ I] 
x (t) 

p,m,i,m 

′ ,i ′ ϕ p,i,i ′ (7)

where ϕ p,i,i ′ represents the delay caused by the p -th flow sending

a unit of data from data center i to i ′ . 
In the following we consider the processing cost of network

functions in data centers. In a time slot, we assume that there are

P flows and each flow contains | sc p | network functions that need

to be processed. Let τm 

be the cost of processing a VNF instance

m and the overall cost is given by 

 

(t) 
r = 

∑ 

p∈ [ P] 

∑ 

m ∈ [ M] 

τm 

| sc p | (8)

Furthermore we can also get the delay of processing VNFs in (9) by

introducing the delay of processing a VNF instance m . 

d (t) 
r = 

∑ 

p∈ [ P] 

∑ 

m ∈ [ M] 

λm 

| sc p | (9)

3.3. Offline cost minimization problem 

In offline model, we assume the information of the network is

known and the optimization problem can be obtained in (10) . 

min 

∑ 

t∈ [ T ] 
C (t) 

D 
+ C (t) 

I 
(10)
ubject to ∑ 

p∈ [ P] 

x (t) 
p,m,i,m 

′ ,i ′ ≤ ρ(t) 
m,i 

w 

r 
m,i 

∀ t ∈ [ T ] , i ∈ [ I] , i ′ ∈ [ I] , m ∈ [ M] , m 

′ ∈ [ M] , r ∈ [ R ] (11a)

∑ 

p∈ [ P] 

F p, v , v ′ ≤ w 

r 
i −

∑ 

m ∈ [ M] 

w 

r 
m,i ∀ i ∈ [ I] , v , v ′ ∈ [ V ] , ∀ m ∈ [ M] , r ∈ [ R ] 

(11b)

∑ 

 ∈ [ M] 

w 

r 
m,i ≤ w 

r 
i r ∈ [ R ] , i ∈ [ I] (11c)

(t) 
m,i 

≥ ρ(t) 
m,i 

− ρ(t−1) 
m,i 

∀ t ∈ [ T ] , m ∈ [ M] (11d)

∑ 

p∈ [ P] 

b p ≤ band i,i ′ ∀ p ∈ [ P ] , i, i ′ ∈ [ I] (11e)

 

(t) 
D 

+ d (t) 
l 

+ d (t) 
r ≤ d (t) ∀ t ∈ [ T ] , i ∈ [ I] , m ∈ [ M] (11f)

(t) 
m,i 

= { 0 , 1 , 2 , . . . } ∀ t ∈ [ T ] , i ∈ [ I] , m ∈ [ M] (11g)

(t) 
m,i 

= { 0 , 1 , 2 , . . . } ∀ t ∈ [ T ] , i ∈ [ I] , m ∈ [ M] (11h)

Here d ( t ) is the threshold of delay. Constraints (11a) and

11b) ensure that there are sufficient resources on the data center i

nd VNF instance m to provide service. Constraint (11c) guarantees

hat the total sum of capacities of VNFs on data center i cannot ex-

eed the maximum capacity of i . Inequality (11e) is the link band-

idth constraint. Constraints (11d) and (11g) are originated from

3) that the number of new VNF instances is an integer and we

nly consider the creation of VNF instances. The total system delay

s defined in (11f) , which cannot exceed the threshold d ( t ) . 
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heorem 1. The offline optimization problem (10) is NP hard. 

roof. We can reduce the problem (10) to a special case of delay-

onstrained shortest path problem, which is known to be NP-hard.

nder restrictions of some demands, our goal is to find a path with

inimum cost while satisfying the delay constraints. We assume

he cost and delay of deployment and processing is 0, that is C (t) 
r =

 

(t) 
D 

= 0 , d (t) 
r = d (t) 

D 
= 0 . The cost of system is represented by trans-

ission cost C (t) 
l 

and the weight is γp,i,i ′ . According to constraint

11e) we know the required demand, so the problem (10) is equiv-

lent to delay-constrained shortest path problem. �

Different from the offline problem, the online routing path and

NF instances will vary according to different flows. We seek to in-

roduce an online scaling algorithm to dynamically scale the VNF

ith minimum cost. The solution to the online scaling problem

an be divided into two steps. First, forecasting the VNF instances

n the subsequent time slot to determine whether there are new

emands generated. If yes, we will adopt a deployment algorithm

o reconfigure the network topology. Second, we will introduce a

outing algorithm to find a routing path for each request. 

. Online forecast-assisted optimization problem 

It is known from (10) that the whole cost contains deployment

nd implementation cost. According to Sun et al. [10] , the initial

ost of deploying VNF instances is often larger. To achieve the goal

f minimum cost, it is a good way to avoid frequent updates to

etwork topology. In this paper, we update the network topology

ccording to whether there are new VNF demands generated in the

ext time slot. Thus we would like to propose a forecast mecha-

ism to help us make decision. 

.1. Online forecast algorithm 

Due to that redeploying VNF instances is costly and time-

onsuming, service providers may prefer to predict the change in

emands and update the network topology correspondingly. It is

nown from [10] that the number of newly added VNF instances

an be obtained by the change of flow rates. Thus, our problem

an be reduced to predicting the flow rate in the next time slot

ased on historical information. The basic idea of predicting in our

ork is to use the Fourier-series-based method for nonlinearly fit-

ing. We let Y ( t ) denote the flow rate of previous n time slots. By

he Fourier transform, we can get 

 (t) = a 0 + 

m ∑ 

k =1 

[ a k cos (kωt) + b k sin (kωt) ] (12)

here a 0 , a k , b k is the Fourier coefficient. However, the traffic char-

cteristic in the NFV-enabled network changes from time to time,

nd the coefficients may not work in different situations. Accord-

ngly, we introduce trend function Tr ( t ) and the training data can

e formulated as the following regression model 

 = AX + B (13) 

here 

 = [ Y (t 1 ) , Y (t 2 ) , . . . , Y (t n )] T 

 = [ a 0 , a 1 , b 1 , a 2 , b 2 , . . . , a m 

, b m 

] T 

 = [ T r(t 1 ) , T r(t 2 ) , . . . , T r(t n )] 

 = 

⎡ 

⎢ ⎣ 

1 cos (ωt 1 ) sin (ωt 1 ) cos (2 ωt 1 ) sin (2 ωt 1 ) . . .

1 cos (ωt 2 ) sin (ωt 2 ) cos (2 ωt 2 ) sin (2 ωt 2 ) . . .

. . . . . . . . . . . . . . . . . .

1 cos (ωt n ) sin (ωt n ) cos (2 ωt n ) sin (2 ωt n ) . . .
n (mωt 1 ) 
n (mωt 2 ) 

. . . 

n (mωt n ) 

⎤ 

⎥ ⎦ 

It is well known that Fourier coefficients can be calculated by

he least square method ( X = (A 

T A ) −1 A 

T Y ) and the accuracy can be

mproved by adjusting the fitting order (i.e., m in (12) ) according

o the determinable coefficient R 2 = 

∑ n 
i =1 Y (i ) − ˆ Y (i ) ∑ n 

i =1 Y (i ) −Y 
, where ˆ Y (i ) is the

tted value and Y is the average of the training set. 

It is worth noting that the regression model may underestimate

he flow rate injected into the network. In this case, the network

annot handle all requests, which impacts service availability. To

olve this problem, we should reserve some redundant capacity

o make sure the network has enough resources in the case that

he actual incoming traffic is greater than the estimated one [31] .

ence, we adopt 3 − σ principle to ensure the network has enough

esources, where σ is the standard variance of the estimated and

eal flow rate in the training set. Based on this principle and re-

ression model, the predicated value can be obtained as 

ˆ 
 (t) = Y (t) + 3 σ + T r(t) (14)

As discussed above, the number of newly added VNF instances

ρ(t) 
m 

can be obtained by the change of flow rate. In the next sec-

ion, we will study how to deploy these instances properly. 

.2. Online VNF placement algorithm 

The deployment of VNF instances determines the routing path,

hich further influences the routing and processing cost. However,

ue to the existence of background traffic, blindly seeking the min-

mum cost may cause link congestion. How to deploy the VNF in-

tance appropriately is a key problem to be addressed in this sec-

ion. 

To maintain the system performance, we use l (t) 
i,i ′ to indicate the

ackground traffic on logic link ii ′ and use the maximum flow rate

n the link as the objective function. 

in max 
i,i ′ ∈ I 

∑ 

m,m 

′ ∈ [ M] 

∑ 

p∈ [ P] 

(x (t) 
p,m,i,m 

′ ,i ′ + l (t) 
i,i ′ ) (15) 

ubject to constraints (11a) –(11f) 

Different from previous studies [13,36] , which assumed that

ervice providers can obtain the whole information on each link,

n our system, we can get the background traffic from i to i ′ if and

nly if the flow goes through the link ii ′ . Due to the noise and

andomness of background traffic, the background traffic on links

s a time varying pattern and obeys the random distribution with

n unknown expectation [28] , which is similar to the multi-armed

andit problem (pull the arm of one of the machines and receive

 random reward). Thus, we prefer to design a multi-armed bandit

lgorithm based on online learning to solve this problem. In our

lgorithm, the arm is represented by each feasible solution. 

heorem 2. There exist I N feasible solutions in a network topology

ith I data centers and N newly added VNF instances. 

We propose the Upper Bound Confidence (UCB) based VNF

lacement algorithm. The main idea of the algorithm is not only

onsidering the reward but also taking into account the size of

he one-sided confidence interval for the average reward. Specif-

cally, the result is denoted by policy index, which consists of cur-

ent average reward and confidence interval. Confidence interval

s a positive number between (0,1), which indicates the degree of

xploration. The more we explore, the more accurate information
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we can get. In this way, we can exploit optimal solution and ex-

plore random solutions simultaneously so as to reduce the impact

of noise. The process of UCB based VNF Placement algorithm is as

follow: We first compute reward and confidence interval for each

arm. Here we define the reward of arm j as r j,t = 1 −
x 
(t) 

p,m,i,m ′ ,i ′ + l 
(t) 

i,i ′ 
band 

ii ′ 
.

After all arms have been selected, we will choose the arm with the

maximum value in the next round. 

The deployment algorithm can be described as follow, as shown

in Algorithm 1 . Algorithm 1 can be divided into two parts. The first

part attempts at all feasible solutions ( lines 4 − 12 ), and the sec-

ond part constantly selects the arm with optimal value until the

network is stable ( lines 13 − 32 ). In each time slot, if �ρ(t) 
m 

> 0 ,

i.e., new demands are generated, we first deploy each of the solu-

tion in X , here X denotes the set of feasible deployment solutions

( lines 3). Due to the constraints of CPU and memory, we need to

determine whether the data center has enough resources to add

new VNF instances. If so, Algorithm 3 is used to route the request

Algorithm 1 VNF placement based on UCB. 

Input: �ρ(t) 
m 

, G (V, E) , flow f p = (s p , d p , b p , sc p ) , w 

r 
i 
(i ∈ I, r ∈ R ), M 

Output: ρ(t) 
m,i 

1: if the system is in provisioning time then 

2: if �ρ(t) 
m 

> 0 then 

3: Follow theorem 2 and �ρ(t) 
m 

to compute all feasible de-

ployment solutions X = { x 1 , x 2 , . . . x n } as candidate arms; 

4: for i = {1,2,3,…,n} do 

5: Choose deployment solution x i ; 

6: if 
∑ 

m ∈ [ M] 

w 

r 
m,i 

+ 

∑ 

�ρ(t) 
m ∈ [ M] 

w 

r 
m,i 

> w 

r 
i 

then 

7: Remove x i from solution set X; 

8: Continue; 

9: else 

10: Apply Algorithm 3 routing the flow f p in G and com-

pute policy index with 

∑ T 
t=1 r i,t 

T + 

√ 

2 lnT 
n i (T ) 

for arm i ; 

11: end if 

12: end for 

13: Create a list Y for all arms in descending order of policy

index and record the sequence number of the first ele-

ment as 1 ( Y 1 is the arm with the largest policy index); 

14: ArmChanged ← True ; 

15: i ← 1; 

16: while ArmChanged do 

17: Choose arm Y i ; 

18: if 
∑ 

m ∈ [ M] 

w 

r 
m,i 

+ 

∑ 

�ρ(t) 
m ∈ [ M] 

w 

r 
m,i 

> w 

r 
i 

then 

19: i = i + 1; 

20: Continue; 

21: else 

22: Apply Algorithm 3 routing the request and compute

the policy index of Y i ; 

23: Update the list Y in descending order of policy in-

dex; 

24: if The first element of Y has not changed then 

25: ArmChanged ← False; 

26: ρ(t) 
m,i 

= Y 1 ; 

27: else 

28: i = 1; 

29: end if 

30: end if 

31: end while 

32: return ρ(t) 
m,i 

; 

33: end if 

34: end if 
nd calculate the policy index. Otherwise, solution x i is removed

rom the set X ( lines 4 − 12 ). In the second part, we create a list

 in descending order of policy index and set the flag as True

 lines 13 − 14 ). In the loop, a similar process is repeated to de-

ermine whether the data center has enough resources. If not, a

uboptimal solution is selected and re-enter the loop. Otherwise,

e compute the policy index and update set Y until the network

s stable ( lines 15 − 32 ). Here we define the confidence interval

 T,n j (T ) as 
√ 

2 lnT 
n j (T ) 

, where n j ( T ) is the number of times that arm

 has been selected during time T . 

.3. Analysis of VNF placement algorithm 

In our problem, service providers should choose an arm j (rep-

esented by solution x j from set X ), and each choice returns a re-

ard r j, 1 , r j, 2 , . . . , r j,n , which obeys the random distribution with

n unknown expectation. We measure regret to evaluate the per-

ormance of the VNF placement algorithm. The regret is caused by

he fact that we cannot always choose the best solution, which is

efined as 

max T − μi 

n ∑ 

i =1 

E [ n i (T )] (16)

here μmax is defined as max 
1 ≤ j≤n 

μ j , and E [ ·] denotes expectation. 

Clearly, we can easily get 
∑ n 

j=1 n j (T ) = T . We introduce � j =
max − μ j . Thus (13) can be rewritten as 

∑ n 
i =1 �i E [ n i (T ) ] , and the

egret can be bounded by simply bounding each E [ n i (T )] . We start

rom standard exponential inequalities to bound regret . 

emma 1 (Chernoff-Hoeffding bound) . Let X 1 , . . . , X n be random

ariables with common range [0,1] such that E [ X t ] = μ. Let S n =
 1 + · · · + X n . Then for all a ≥ 0, we can get 

 { S n ≥ nμ + a } ≤ e −2 a 2 /n 

, P { S n ≤ nμ − a } ≤ e −2 a 2 /n 

(17)

Recall that the policy index is equal to confidence interval

 T,n i (t) add average reward r j,t . We introduce an indicator a j,t = 1

f arm j is selected in time t and rewrite n j ( t ), r j,t as n max (t) and

 

max 
t if solution j is the index of the optimal arm. Then, we can get

he following theorem. 

heorem 3. For n > 1, the regret of our algorithm after any number

 of choices is no more than [8 
∑ n 

i =1 ( 
ln T 
�i 

)] + (1 + 

π2 

3 )( 
∑ n 

i =1 �i ) 

roof. Let L be a positive integer and in each time slot 1 ≤ L ≤
 j (t − 1) we can get 

 

(T ) 
j 

= 1 + 

T ∑ 

t= n +1 

{ a j,t } 

≤ L + 

T ∑ 

t= n +1 

{
a j,t 

}

≤ L + 

T ∑ 

t= n +1 

{
r 

max 
n max (t−1) + c t −1 ,n max (t −1) ≤ r j,n j (t−1) + c t −1 ,n j (t −1) 

}

≤ L + 

T ∑ 

t= n +1 

{
min 

1 ≤p≤t−1 
r 

max 
p + c t−1 ,p ≤ max 

L≤p j ≤t−1 
r j,p j + c t−1 ,p j 

}

≤ L + 

∞ ∑ 

t=1 

t−1 ∑ 

p=1 

t−1 ∑ 

p j = L 

{
r 

max 
p + c t,p ≤ r j,p j + c t,p j 

}
(18)

From r max 
p + c t,p ≤ r j,p j 

+ c t,p j 
we can obtain the following in-

quality 

 

max 
p ≤ μmax − c t,p (19)
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Fig. 2. An example of a multi-level acyclic graph, where l 2 , l 3 , l 4 represent the set 

of candidate data centers. 
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 j,p j ≥ μ j + c t,p j (20) 

∗ ≥ μ j + 2 c t,p j (21) 

Bounding the probability of (19) and (20) by Lemma 1 , we have

 { r max 
p ≤ μmax − c t,p } ≤ e −4 ln t = t −4 (22)

 { r j,p j ≥ μ j + c t,p j } ≤ e −4 ln t = t −4 (23)

According to (21) , we can get p j ≥ 
 (8 ln T ) / �2 
j 
� and the

18) can be modified as 

 [ n j (T )] ≤ 
 (8 ln T ) / �2 
j � + 

∞ ∑ 

t=1 

t−1 ∑ 

p=1 

t−1 ∑ 

p j = 
 (8 ln T ) / �2 
j 
� 
×(2 t −4 ) 

≤ 
 (8 ln T ) / �2 
j � + 

∞ ∑ 

t=1 

t−1 ∑ 

p=1 

t−1 ∑ 

p j =1 

×(2 t −4 ) 

≤ (8 ln T ) / �2 
j + 1 + 

π2 

3 

(24) 

This completes the proof. �

. Online routing of minimum-cost algorithm with delay 

onstraints 

As aforementioned, we have known the locations of VNF in-

tances. In this section, we would like to propose an online routing

lgorithm for each flow with minimum cost while satisfying delay

onstraints by constructing a multi-level acyclic graph. 

.1. Construction of multi-level acyclic graph 

Given a flow p with a service chain sc p = { sc p, 1 , sc p, 2 , . . . , sc p,M 

} ,
e define | sc p | = M and use G ( L p , N p ) to denote the multi-level

cyclic graph with M + 2 levels. The first level l 1 represents the

ource and the last level l M+2 represents the destination. These

wo levels contain only one node, s p and d p , respectively. Level

 i ( ∀ i ∈ { 2 , . . . , (M + 1) } ) represents the set of candidate data cen-

ers that can process (i − 1) -th network function. We can define

 p = 

⋃ M+1 
i =2 l i 

⋃ { s p , d p } and use l i, j ( j = { 1 , 2 , 3 . . . ρ(t) 
m 

} , ∀ m ∈ M) to

ndicate the j -th candidate data center in level i . 

For each node in level l i and l i +1 , we use directed edges to con-

ect all pairs of nodes and use (l i , l i +1 ) to denote the set of all

dges between level l i and level l i +1 . Each edge is the shortest path

n G ( V, E ) if such a path exist. In general, N p can be represented

s { (s p , l 1 ) } ⋃ { (l M+1 , d p ) } ⋃ M 

i =2 { (l i , l i +1 ) } . Fig. 2 gives an example of

ulti-level acyclic graph. 

.2. Heuristic algorithm with delay constraint 

It is known from Ref. [37] that the delay-constrained short-

st path problem is NP-hard. In the following, we will propose

 heuristic algorithm to solve the delay-constrained shortest path

roblem. 

Given a flow f p in G ( V, E ) with a sequence of network func-

ions in a specified order, the purpose of our algorithm is to

nd the shortest path from source to destination with the mini-

um cost while meeting delay constraint. We first construct multi-

evel acyclic graph G ( L p , N p ). The edge in acyclic graph is the

hortest path in G ( V, E ). Then function SettleInPath is called to

nd the shortest path by the weight γp,i,i ′ . If the path meets

he delay constraint, this path is regarded as the optimal solu-

ion and the algorithm stops ( lines 1 − 5 ). Otherwise, we change
he weight to ϕ p,i,i ′ and call function SettleInPath to find the

ath with the lowest latency. If the delay of the obtained path

s less than the threshold, we regard it as the appropriate path

e have founded so far. If not, there is no suitable path that

an meet the delay constraint and the network cannot process

his flow ( lines 6 − 9 ). To find the path with the lowest cost, we

dopt Lagrange relaxation to construct the multiplier λ to increase

he dominance of H d . The λ is calculated by the current infor-

ation of path H c and H d ( lines 10 − 12 ). Same as before, we

all function SettleInPath to find the path H r by the new weight

p,i,i ′ + λ · ϕ p,i,i ′ . If c λ(H r ) + c ′ (H r ) = c λ(H c ) + c ′ (H c ) , then the H c 

nd H d are minimum cost paths. Otherwise, we replace either

 d or H c with H r according to whether H r meets the delay con-

traint and repeat this step until c λ(H r ) + c ′ (H r ) = c λ(H c ) + c ′ (H c )

 lines 13 − 24 ). 

The function SettleInPath ensures that the shortest path can be

ound while satisfying the resource constraint. Parameter type is a

inary variable equals to cost or delay . In the function, we first set

he Flag to False and then determine the value of type . According to

ype , we find a path H with minimal cost or delay ( lines 27 − 35 ).

otice that H is composed of many logical links in the graph. If

ne of the paths does not have enough bandwidth, or physical ma-

hines on the path does not have enough resources (CPU, memory),

e will remove it from the graph and redirect the flow to another

ath capable of sufficient resources ( lines 36 − 42 ). If all the links

n the graph have been removed and no H has been found, the

unction will terminate ( lines 43 − 45 ). 

In the following we will analyze the time complexity of

lgorithm 2 . The first part of the algorithm is the construction

f multi-level acyclic graph. We can divide the construction into

wo step. Firstly we need to take O ( 
∑ l+1 

i =1 | u i | + 2) to construct

ach level in L p , and secondly take O ( 
∑ l+1 

i =1 (| u i | × | u i +1 | )) to con-

ect each level in N p , which equals to O (| u | 3 ). According to [38] ,

he complexity of lagrange relaxation is O (| u | 2 log 4 | u |). The func-

ion SettleInPath takes O (| u | 2 ) time. Thus, the time complexity of

lgorithm 2 is O (| u | 3 ). 

In the final, we will summarize our complete algorithm in

lgorithm 3 . Algorithm 3 incorporates the Fourier-Series-based

orecast method to get the number of newly VNF instances, to-

ether with VNF deployment and routing algorithm. Here, the fore-

ast algorithm is executed in prediction stage to predict whether

t is necessary to update the network topology and return the

umber of newly VNF instances. Deployment algorithm uses the

umber of VNFs as input to determine the locations of each VNF

nstance. Finally, we employ the proposed routing algorithm to

hoose the shortest path for each flow with delay and resources

onstraints. 
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Algorithm 2 Heuristic algorithm for finding shortest path with 

delay constraint. 

Input: G (V, E) , flow f p = (s p , d p , b p , sc p ) , d 
(t) , M, Band path , UnSolvedPath 

= 0 

Output: Shortest path in G with delay constraint 

1: construct multi-level acyclic graph represented by G (L p , N p ) ; 
2: H c = SettleInPath( G (L p , N p ) , f p , γp,i,i ′ , cost); 

3: if d(H c ) + d (t) 
r ≤ d (t) then 

4: return H c ; 

5: else 

6: H d = SettleInPath( G (L p , N p ) , f p , ϕ p,i,i ′ , delay); 

7: if d(H d ) + d (t) 
r > d (t) then 

8: UnSolvedPath = UnSolvedPath + 1; 

9: else 

10: boolean ← false ; 

11: while boolean : boolean = true do 

12: Construct the multiplier λ = c(H c ) −c(H d ) 
d (H d ) −d (H c ) 

, where c(H) and 

d(H) are the cost and delay on edges; 

13: H c = SettleInPath( G (L p , N p ) , f p , γp,i,i ′ + λ · ϕ p,i,i ′ , cost); 

14: if c λ(H r ) + c ′ (H r ) = c λ(H c ) + c ′ (H c ) then 

15: boolean ← true ; 

16: else 

17: if d(H r ) + d (t) 
r ≤ d (t) then 

18: H d ← H r ; 

19: else 

20: H c ← H r ; 

21: end if 

22: end if 

23: end while 

24: return The shortest path H d ; 

25: end if 

26: end if 

27: function SettleInPath( G ← graph , p ← f low , ω ← weight , t ype ← 

cost or delay ) 

28: Flag ← True; 

29: while Flag do 

30: Flag ← False; 

31: if type == cost then 

32: Apply Dijkstra’s algorithm to find the shortest path H for p 

with the minimum cost in G by the weight ω; 

33: else 

34: Apply Dijkstra’s algorithm to find the shortest path H for p 

with the minimum delay in G by the weight ω; 

35: end if 

36: for path in H do 

37: if b p > Band path or F p,i,i ′ > w 

r 
i 
− ∑ 

m ∈ [ M] 

w 

r 
m,i 

then 

38: Remove the path from G ; 

39: Flag ← True; 

40: Break; 

41: end if 

42: end for 

43: if G is ∅ then 

44: return UnSolvedPath + 1; 

45: end if 

46: end while 

47: return H 

Algorithm 3 The complete algorithm. 

Input: ρ(t−1) 
m 

, �ρ(t) 
m 

, G (V, E) , flow f p = (s p , d p , b p , sc p ) 

Output: ρ(t) 
m,i 

, shortest path in G (V, E) 

1: while The network is operational do 

2: if The system is in prediction stage then 

3: Apply Forecasting Algorithm to get �ρ(t) 
m 

; 

4: end if 

5: if The system is in provisioning time then 

6: Apply Deployment Algorithm to get ρ(t) 
m,i 

; 

7: Apply Routing Algorithm to find the shortest path in G (V, E) ; 
8: end if 

9: end while 
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. Performance evaluation 

In this section, we present the experiment environment and re-

ults of the performance evaluation. 

.1. Simulation setup 

We conduct our simulations on the Fat-Tree [39] , VL2 [40] and

ne inter-datacenter network. Each data center network consists of

28 severs [16] . Each sever is connected to some edge switches,

he number of which may vary according to different topologies.

he bandwidth of links between nodes is 10 0 0 Mbps and the CPU

nd memory in sever are 4 ∗10,0 0 0 MIPS and 4GB respectively

8,30] . For inter-datacenter network, there are 100 access nodes

ith 150 links and 20 data centers [30] . The bandwidth of links

etween nodes is 10 0 0 0 Mbps and the CPU and memory in severs

re 12 ∗10,0 0 0 MIPS and 12GB respectively [8,30] . What’s more, the

elay between data centers are set proportional to their geographic

istances. We assume the distance between two data centers is

rom 500 to 10 0 0 KM [11] and introduce a multiplier to calculate

he delay. Following [16] , the capability of each VM is limited by

ts CPU. We assume the CPU of each VM is 10,0 0 0 MIPS and the

emory is 1GB. 

In this paper, six types of network functions are considered, i.e.,

rewall, NAT, IDS, Load Balancing, gateways and Proxy [11,13] . The

ize of CPU and memory requirement for a VNF are chosen from

n exponential distribution with mean 20 0 0 MIPS and 0.5GB [41] .

ollowing [5,24] configurations, the change ratio of firewall and

DS is 0.9 and 0.8, respectively. We assume the cost of the link is

nversely proportional to the link capacity, which means that the

ore bandwidth resources, the lower cost caused by the trans-

ission of unit-sized flow. In each time slot, we generate 20 0 0

ows with bandwidth demand between [10,60] Mbps for data cen-

er networks and 40 0 0 flows with bandwidth demand between

100,150] Mbps for the inter-datacenter network. In order to verify

he performance of our algorithm in actual network experimental

nvironment, the flows are generated based on the Alibabas cluster

race [42] . The cluster trace is obtained by about 1300 machines

uring a period of 12 hours. The trace contains the collocation of

nline services (aka long running applications) and batch work-

oads. We set the length of a timeslot as 20 minutes so that the

etwork has enough time to update. 

We compare our method with the following algorithms. 

• Greedy Algorithm [12] : It adopts an online algorithm to mini-

mize the cost for scaling VNF instances, while in the meantime,

minimizing the congestion in face of unknown varying traffic. 

• Elastic SFC Algorithm (ESFC) [30] : It adopts horizontal and ver-

tical scaling of VNFs and dynamic bandwidth allocation to op-

timize network performance. 

• Cross Rack Pipelined SFC Algorithm (CRPS) [31] : It first pre-

dicts the upper bound of traffic rate in the next time slot and

then scales VNF instances in order to keep the high availability

of service. 

For the background traffic, we send 200 Mbps traffic in ex-

ectation varying from 100 Mbps to 500 Mbps on each link.

quation (25) is the probability density function that ensures the

xpectation of background traffic c in the range [ a, b ]. 

p(t) = 

{
b−a 

bc−ab 
a ≤ t < c 

a 
b 2 −cb 

c ≤ t ≤ b 
(25)

.2. Performance comparison 

In this section, we compare our algorithm with others under

ultiple network topologies. 
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Fig. 3. The evolution of Normalized traffic rates. 
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.2.1. Estimation of traffic 

In this section, we compare the performance of our prediction

lgorithm with the CRPS algorithm in [31] in terms of traffic esti-

ation. The estimation error is defined as 

= 1 −
∑ n 

i =1 Y (i ) − ˆ Y (i ) ∑ n 
i =1 Y (i ) − Y 

(26) 

here ˆ Y (i ) is the estimated value, Y is the average of training set

nd Y ( i ) is the real value. We select a part of data from Alibabas

luster trace [42] as the training set, which is shown in Fig. 3 .

y the evolution of traffic rate in Fig. 3 , we can define the trend

unction as b 0 ln ( t ). We use Statistical Product and Service Solutions

SPSS) to solve the regression function and consider the impact of

hanges in the fitting order ( m in the formula (12) ) and the train-

ng set size ( n in the formula (26) ) on performance. 

Fig. 4 (a) shows how the error changes with fitting order m . We

x the training set size to be 3 (data generated in 3 time slots)

nd change the fitting order. We can see from Fig. 4 (a) that as the

tting order increases, the error is reduced. When the fitting or-

er reaches 6, the system is basically stable and our algorithm can

chieve better performance. This is because we introduce the trend

unction. Since the traffic characteristic in network changes from

ime to time, the coefficient may not work in a certain situations.

hus in our algorithm, we introduce an appropriate trend function

o improve the robustness and estimation accuracy. 

In Fig. 4 (b), we fix the fitting order as 5 and change the size

f training set n . The curve in the figure shows that the size of

he training set has little effect on the accuracy. However, there is

n interesting phenomenon that the error first reduces and then

ncreases. This is due to that with the increase of the data set, the

raffic characteristics become complicated, and history information

ay play negative role to train our model. By experimental results,

e find that the method can derive the best performance when we

et the fitting order as 6, the train set as 4 and the trend function

s ln ( t ). 
Fig. 4. The evolution of prediction errors w
.2.2. Resource usage and latency 

In this section, we compare resource usage and latency of our

lgorithms with those of other three algorithms, i.e., Greedy al-

orithm [12] , ESFC algorithm [30] and CRPS algorithm [31] un-

er three network topologies. We first check the impact of the

mount of data on resource usage and latency, i.e., total cost, as

hown in Fig. 5 . We can observe from Fig. 5 that our algorithm

an save more than 20% cost against others. This is because our al-

orithm first predicts whether there is a demand to add new VNF

nstances, which avoids frequent changes to the network topology,

nd adopts the UCB algorithm to deploy VNF instances, which can

void link congestion and reduce transmission cost. However, in

he ESFC, it first allocates the residual resources in the network ac-

ording to end-to-end delay, and then scales the network vertically

r horizontally. Nevertheless, deploying VNF instances based on

esources can easily cause link congestion and high transmission

ost. In εt − greedy algorithm and CRPS, the frequent changes to

etwork topology can significantly increase the cost and the traffic

s concentrated on some data centers, resulting in high processing

ost. It is worth noting that in Fig. 5 (c), the total cost of ESFC is

reater than CRPS when the training set size reaches 50 0 0. This is

ecause ESFC can make full use of resources in the network. When

he training set is large, data centers and links are fully loaded.

herefore, additional VNF instances need to be added, resulting in

igh cost. 

We further check the impact of the length of the service chain.

e test four ranges of service chains, which are (1,2), (3,4), (5,6)

nd (7,8) respectively [16] . Fig. 6 shows the longer service chains

auses more cost and our algorithm can also achieve a good per-

ormance against others. This is because our algorithm can update

opology as needed and the distributed data centers can provide

etter routing environment. What’s more, we introduce confidence

nterval c T,n j (t) in UCB algorithm to consider the uncertainty of the

eward, and the candidates can get more opportunities to be se-

ected. In CRPS and ESFC, the longer service chains causes more

ost and ESFC can get better performance in inter-datacenter net-

ork. This is because our network is a cross rack pipelined model

nd there are always some redundant VMs [31] . ESFC can allocate

he residual resources well and scale the network vertically. Notice

hat in εt − greedy algorithm, the length of the service chain has

ittle effect on the cost. This is because in this simulation, the net-

ork size is relatively small, the construction cost of VNF instance

s a major part of the total cost. 

For the same reason, we can get the algorithm running time in

ig. 7 and our algorithm can also achieve good performance. How-

ver, in Fig. 7 (b), when the length of service chain reaches [7,8],

he performance of CRPS is better than ESFC. This is because the

ore requests consume the limited bandwidth especially after the

esidual resources have been allocated. The fixed amount of net-
ith fitting order and training set size. 
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Fig. 5. The impact of the amount of data set on total cost in (a) Fat-Tree, (b) VL2, and (c) inter-datacenter network. 

Fig. 6. The impact of the length of service chain on total cost in (a) Fat-Tree, (b) VL2, and (c) inter-datacenter network. 

Fig. 7. (a) The impact of the amount of training set on algorithm running time under three topologies and (b) the impact of the length of the service chain on algorithm 

running time under three topologies. The three topologies from left to right is Fat-Tree, VL2, and inter-datacenter network, respectively. 
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locates the residual resources in the network based on end-to-end 
work resources with more VNFs cause the bottleneck in network

transmission, which results in running time increasing. 

Finally, we will consider the impact of end-to-end delay con-

straint on the total cost of the algorithm as shown in Fig. 8 , where

the delay is considered from 40 ms to 200 ms [13] . We can observe

From Fig. 8 that with the relaxation of delay constraint, the cost

is reduced and can be stable when the delay constraint reaches

a certain value. This is because when the delay constraint is re-

laxed, we do not need to discard some low-cost paths that violate

the constraint. If the delay constraint exceeds the latency on the
inimum-cost path, the cost will remain stable. In addition, we

an find our algorithm can achieve better performance than others.

his is due to that by the multiplier λ in Algorithm 2 , we can con-

tantly change the link weight to find the minimum cost path that

atisfies the delay constraint. However, CRPS algorithm and greedy

lgorithm only assign the traffic based on the residual resources

nd ignore the dynamic changes in link cost. We can see From 8 (c)

hat when the constraint of end-to-end delay reaches 120ms, CRPS

an achieve better performance than ESFC. This is because ESFC al-
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Fig. 8. The impact of the delay constraint on total cost in (a) Fat-Tree, (b) VL2, and (c) inter-datacenter network. 

Fig. 9. The change of link utilization on (a) Fat-Tree, (b) VL2, and (c) inter-datacenter network. 
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Fig. 10. The evolution of rewards in (a) uniform background traffics and (b) permu- 

tation background traffics. 
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elay. When delay constraint is relaxed, more low-cost but high-

elay paths can be found. In this case, resources allocation meth-

ds in ESFC may not work well and cause high cost. 

.2.3. Performance of link utilization 

In this experiment, we define the link utilization as the num-

er of the used links divided by the total number of links. Fig. 9

hows the trend of link utilization as time slots increase. We can

bserve that as the system operating continues, the link utiliza-

ion in the network is gradually increasing. The reason is that

he network topology is a stochastic model and each switch can

erve as the source and destination of the flow, which cause many

on-repeating routing paths. Compared to other three algorithms,

t − greedy has the lowest link utilization, followed by ESFC. This

s because the limitations of VNF deployment in ESFC may cause

ows to be only processed in one data centers. 

In εt − greedy algorithm, the low level of exploration of can-

idate solutions results in the insufficient use of links. And CRPS

lgorithm only considers the residual capacity of links and wants

o fully utilize the capacity of data centers, which may result in

ata transmission being concentrated on a small number of links.

here is an interesting observation in Fig. 9 (b) that CRPS has better

erformance than proposed algorithm when time slot is equal to

0. This is due to the exploration mechanism of feasible solutions.

hen time slot is equal to 60, the confidence interval is small

nd the exploration of other feasible solutions is insufficient, which

eads to the concentration of data transmission on some links. 

.2.4. Performance of congestion 

We evaluate the reward r j,t achieved by εt − greedy algorithm

nd ours under two types of background traffic. One is uniform

nd the other is permutation [28] . For uniform background traf-

c, data centers send 500 Mbps traffic in expectation varying from

00 Mbps to 1000 Mbps on each link. For permutation background

raffic, data centers randomly choose a part of links and generate

200 Mbps traffic in expectation between 800 Mbps and 30 0 0 Mbps .
s defined before, the reward indicates the degree of the conges-

ion on the link. 

Fig. 10 shows that the reward varies as the growth of time slots.

bviously, the trend is gradually approaching a fixed value. This is

ecause as time slots grow, the exploration of candidates is grad-

ally reduced. The value of εt − greedy algorithm and ours is 0.56,

.73 respectively in uniform background traffic and 0.54, 0.69 re-

pectively in permutation background traffic. The reason is that our

lgorithms consider the uncertainty of the reward, and the intro-

uction of confidence interval makes candidates get more oppor-

unities to be selected. In εt − greedy algorithm, the exploration is

andom and has no any distinction, which may lead to low reward

n long-term processing. What’s more, due to the error in exploring

he feasible solutions, the curve in Fig. 10 (b) fluctuates greatly. But

he system will return a better solution and eventually approach a

table value. 

. Conclusions 

In this paper, we consider the horizontal scaling of VNFs. Firstly,

e construct the system model and formulate a cost minimiza-

ion problem. In practice, the network is a time-varying system

nd network topology needs to be constantly adjusted by adding
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ization and data center networks. 
or removing VNF instances. A good way to reduce cost is to avoid

frequent updates to the network topology. Thus, we adopt a fore-

casting algorithm to update network on-demand. Furthermore, due

to the sharing nature of data centers, there may exist some other

workloads to affect the performance of system, we propose a de-

ployment algorithm based on online-learning to eliminate the in-

fluence. In this algorithm, the performance of system is character-

ized as reward and the optimal deployment solution can be finally

found out. When we have configured the network, we propose a

routing algorithm to guarantee that the service chain is processed

in a specific order while meeting the delay constraint. Finally, ex-

perimental results show that our algorithms can reduce more than

20% cost while maintain system performance compared to other

heuristic algorithms. 
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